The key role of the drug self-aggregation ability to obtain optimal nanocarriers based on aromatic-aromatic drug-polymer interactions

María Gabriela Villamizar-Sarmiento1,2, Juan Guerrero3, Ignacio Moreno-Villoslada4, Felipe A. Oyarzun-Ampuero1,2,5
1Department of Sciences and Pharmaceutical Technology, University of Chile, Santiago de Chile 8380494, Chile
2Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
3Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins 3363, Estación central, 9170002 Santiago, Chile
4Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110033, Chile
5Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile

Tài liệu tham khảo

Schneider, 2017, Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems, J. Control. Release, 262, 284, 10.1016/j.jconrel.2017.08.004 Alven, 2019, Polymer-drug conjugates containing antimalarial drugs and antibiotics, J. Drug Delivery Sci. Technol., 53, 10.1016/j.jddst.2019.101171 Kesharwani, 2019, Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors, Colloids Surf., B, 173, 581, 10.1016/j.colsurfb.2018.10.022 Sur, 2019, Recent developments in functionalized polymer nanoparticles for efficient drug delivery system, Nano-Struct. Nano-Objects, 20, 10.1016/j.nanoso.2019.100397 Oyarzun-Ampuero, 2012, A Potential Nanomedicine Consisting of Heparin-Loaded Polysaccharide Nanocarriers for the Treatment of Asthma, Macromol. Biosci., 12, 176, 10.1002/mabi.201100102 Oyarzun-Ampuero, 2009, Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma, Int. J. Pharm., 381, 122, 10.1016/j.ijpharm.2009.04.009 Guerrero, 2018, Curcumin-loaded nanoemulsion: a new safe and effective formulation to prevent tumor reincidence and metastasis, Nanoscale, 10, 22612, 10.1039/C8NR06173D Jiménez-Fernández, 2014, Nanoparticles as a novel delivery system for vitamin C administration in aquaculture, Aquaculture, 432, 426, 10.1016/j.aquaculture.2014.03.006 George, 2019, Natural biodegradable polymers based nano-formulations for drug delivery: A review, Int. J. Pharm., 561, 244, 10.1016/j.ijpharm.2019.03.011 Dalmoro, 2017, Hydrophilic drug encapsulation in shell-core microcarriers by two stage polyelectrolyte complexation method, Int. J. Pharm., 518, 50, 10.1016/j.ijpharm.2016.12.056 Vasvári, 2018, Matrix systems for oral drug delivery: Formulations and drug release, Drug Discovery Today: Technol., 27, 71, 10.1016/j.ddtec.2018.06.009 Turner, 2004, Formulation development and human in vitro-in vivo correlation for a novel, monolithic controlled-release matrix system of high load and highly water-soluble drug niacin, Drug Dev. Ind. Pharm., 30, 797, 10.1081/DDC-200026747 Mohylyuk, 2020, IVIVC for Extended Release Hydrophilic Matrix Tablets in Consideration of Biorelevant Mechanical Stress, Pharm. Res., 37, 10.1007/s11095-020-02940-7 Lu, 2016, 87 Tomar, 2019, 741 Villamizar-Sarmiento, 2019, A New Methodology to Create Polymeric Nanocarriers Containing Hydrophilic Low Molecular-Weight Drugs: A Green Strategy Providing a Very High Drug Loading, Mol. Pharm., 16, 2892, 10.1021/acs.molpharmaceut.9b00097 Vrignaud, 2011, Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles, Biomaterials, 32, 8593, 10.1016/j.biomaterials.2011.07.057 Naidu, 2019, Novel Hydrophilic Copolymer-Based Nanoparticle Enhances the Therapeutic Efficiency of Doxorubicin in Cultured MCF-7 Cells, ACS Omega, 4, 17083, 10.1021/acsomega.8b02894 Gharieh, 2019, Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics, Adv. Colloid Interface Sci., 269, 152, 10.1016/j.cis.2019.04.010 Ramazani, 2016, Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges, Int. J. Pharm., 499, 358, 10.1016/j.ijpharm.2016.01.020 Kerlin, 2013, Chapter 24 - Pathology in Non-Clinical Drug Safety Assessment, 725 Hollander-Rodriguez, 2006, Hyperkalemia, Am. Fam. Phys., 73, 283 Hunt, 2019, Single-dose sodium polystyrene sulfonate for hyperkalemia in chronic kidney disease or end-stage renal disease, Clin. Kidney J., 12, 408, 10.1093/ckj/sfy063 Mistry, 2016, Evaluation of Sodium Polystyrene Sulfonate Dosing Strategies in the Inpatient Management of Hyperkalemia, Ann. Pharmacother., 50, 455, 10.1177/1060028016641427 Palaka, 2018, Evidence in support of hyperkalaemia management strategies: A systematic literature review, Int. J. Clin. Pract., 72, e13052, 10.1111/ijcp.13052 Garg, 2005, Development and Characterization of Bioadhesive Vaginal Films of Sodium Polystyrene Sulfonate (PSS), a Novel Contraceptive Antimicrobial Agent, Pharm. Res., 22, 584, 10.1007/s11095-005-2490-1 Herold, 2000, Poly(Sodium 4-Styrene Sulfonate): An Effective Candidate Topical Antimicrobial for the Prevention of Sexually Transmitted Diseases, J. Infect. Dis., 181, 770, 10.1086/315228 Bourne, 2003, Poly(sodium 4-styrene sulfonate): evaluation of a topical microbicide gel against herpes simplex virus type 2 and Chlamydia trachomatis infections in mice, Clin. Microbiol. Infect., 9, 816, 10.1046/j.1469-0691.2003.00659.x Zairov, 2018, Polystyrenesulfonate-coated nanoparticles with low cytotoxicity for determination of copper(II) via the luminescence of Tb(III) complexes with new calix[4]arene derivatives, Mikrochim. Acta, 185, 10.1007/s00604-018-2923-2 Pranti, 2018, PEDOT: PSS coating on gold microelectrodes with excellent stability and high charge injection capacity for chronic neural interfaces, Sens. Actuators, B, 275, 382, 10.1016/j.snb.2018.08.007 Schander, 2016, Design and fabrication of novel multi-channel floating neural probes for intracortical chronic recording, Sens. Actuators, A, 247, 125, 10.1016/j.sna.2016.05.034 Svezhentseva, 2017, Water-soluble hybrid materials based on {Mo6X8}4+ (X = Cl, Br, I) cluster complexes and sodium polystyrene sulfonate, New J. Chem., 41, 1670, 10.1039/C6NJ03469A Pattananuwat, 2018, Controllable nanoporous fibril-like morphology by layer-by- layer self-assembled films of bioelectronics poly(pyrrole-co-formyl pyrrole)/polystyrene sulfonate for biocompatible electrode, Mater. Res. Bull., 99, 260, 10.1016/j.materresbull.2017.11.008 Moreno-Villoslada, 2010, Comparative study of the self-aggregation of rhodamine 6G in the presence of poly(sodium 4-styrenesulfonate), poly(N-phenylmaleimide-co-acrylic acid), poly(styrene-alt-maleic acid), and poly(sodium acrylate), J. Phys. Chem. B, 114, 11983, 10.1021/jp104340k Srivastava, 2018, Physicochemical Interactions of Chlorpheniramine Maleate with Sodium Deoxycholate in Aqueous Solution, J. Surfact. Deterg., 21, 879, 10.1002/jsde.12186 Tavano, 2016, Cromolyn as surface active drug (surfadrug): Effect of the self-association on diffusion and percutaneous permeation, Colloids Surf., B, 139, 132, 10.1016/j.colsurfb.2015.12.010 Alam, 2018, J. Mol. Liq., 252, 321, 10.1016/j.molliq.2017.12.128 Kumar, 2017, Effect of anionic surfactant and temperature on micellization behavior of promethazine hydrochloride drug in absence and presence of urea, J. Mol. Liq., 238, 389, 10.1016/j.molliq.2017.05.027 Bolay, 2010, 47 He, 2011, Study on the interaction between promethazine hydrochloride and bovine serum albumin by fluorescence spectroscopy, J. Lumin., 131, 285, 10.1016/j.jlumin.2010.10.014 Azmi, 2017, Development and validation of fluorescence spectrophotometric method: Quantitation of chlorpheniramine maleate in pharmaceutical formulations, J. Mol. Liq., 243, 750, 10.1016/j.molliq.2017.08.081 Park, 2003, A new formulation of controlled release amitriptyline pellets and its in vivo/in vitro assessments, Arch. Pharm. Res., 26, 569, 10.1007/BF02976883 Pickup, 1982, Comparison of the effect of amitriptyline in standard and sustained-release formulations on cardiac systolic time intervals, J. Cardiovasc. Pharmacol., 4, 575, 10.1097/00005344-198207000-00008 Mathir, 1997, In vitro characterization of a controlled-release chlorpheniramine maleate delivery system prepared by the air-suspension technique, J. Microencapsul., 14, 743, 10.3109/02652049709006824 Moreno-Villoslada, 2005, Binding of chlorpheniramine maleate to pharmacologically important alginic acid, carboxymethylcellulose, κ-carageenan, and ι-carrageenan as studied by diafiltration, J. Appl. Polym. Sci., 98, 598, 10.1002/app.22056 Attwood, 1983, Surface activity and colloidal properties of drugs and naturally occurring substances, 124 Kabir, 2011, Mixed micelles of amphiphilic drug promethazine hydrochloride and surfactants (conventional and gemini) at 293.15K to 308.15K: Composition, interaction and stability of the aggregates, J. Colloid Interface Sci., 354, 700, 10.1016/j.jcis.2010.11.005 Oyarzun-Ampuero, 2013, Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery, Eur. J. Pharm. Sci., 49, 483, 10.1016/j.ejps.2013.05.008 Moreno-Villoslada, 2006, Simultaneous interactions between a low molecular-weight species and two high molecular-weight species studied by diafiltration, J. Membr. Sci., 272, 137, 10.1016/j.memsci.2005.07.029 Moreno-Villoslada, 2007, Aromatic-aromatic interaction between 2,3,5-triphenyl-2H-tetrazolium chloride and poly(sodium 4-styrenesulfonate), J. Phys. Chem. B, 111, 6146, 10.1021/jp071782m Moreno-Villoslada, 2004, Interactions of 2,3,5-triphenyl-2H-tetrazolium chloride with poly(sodium 4-styrenesulfonate) studied by diafiltration and UV-vis spectroscopy, J. Membr. Sci., 244, 205, 10.1016/j.memsci.2004.06.053 Moreno-Villoslada, 2008, Stacking of 2,3,5-triphenyl-2H-tetrazolium chloride onto polyelectrolytes containing 4-styrenesulfonate groups, J. Phys. Chem. B, 112, 11244, 10.1021/jp802668q Moreno-Villoslada, 2006, π-Stacking of rhodamine B onto water-soluble polymers containing aromatic groups, Polymer, 47, 6496, 10.1016/j.polymer.2006.07.059 Moreno-Villoslada, 2005, Comparison between the binding of chlorpheniramine maleate to poly(sodium 4-styrenesulfonate) and the binding to other polyelectrolytes, Polymer, 46, 7240, 10.1016/j.polymer.2005.06.033 Orellana, 2015, Association Efficiency of Three Ionic Forms of Oxytetracycline to Cationic and Anionic Oil-In-Water Nanoemulsions Analyzed by Diafiltration, J. Pharm. Sci., 104, 1141, 10.1002/jps.24255 Fuenzalida, 2014, Immobilization of hydrophilic low molecular-weight molecules in nanoparticles of chitosan/poly(sodium 4-styrenesulfonate) assisted by aromatic-aromatic interactions, J. Phys. Chem. B, 118, 9782, 10.1021/jp5037553 Nothnagel, 2018, How to measure release from nanosized carriers?, Eur. J. Pharm. Sci., 120, 199, 10.1016/j.ejps.2018.05.004 Zhang, 2010, DDSolver: an add-in program for modeling and comparison of drug dissolution profiles, AAPS J., 12, 263, 10.1208/s12248-010-9185-1 Catalan-Figueroa, 2018, A mechanistic approach for the optimization of loperamide loaded nanocarriers characterization: Diafiltration and mathematical modeling advantages, Eur. J. Pharm. Sci., 125, 215, 10.1016/j.ejps.2018.10.002 Moreno-Villoslada, 2007, Tuning the pKa of the antihistaminic drug chlorpheniramine maleate by supramolecular interactions with water-soluble polymers, Polymer, 48, 799, 10.1016/j.polymer.2006.12.015 Moreno-Villoslada, 2009, Control of C.I. Basic Violet 10 aggregation in aqueous solution by the use of poly(sodium 4-styrenesulfonate), Dyes Pigm., 82, 401, 10.1016/j.dyepig.2009.03.004 Bobo, 2016, Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date, Pharm. Res., 33, 2373, 10.1007/s11095-016-1958-5 Zottel, 2019, Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy, Materials (Basel), 12, 10.3390/ma12101588 Fancher, 2019, Potential Strategies to Reduce Blood Pressure in Treatment-Resistant Hypertension Using Food and Drug Administration-Approved Nanodrug Delivery Platforms, Hypertension, 73, 250, 10.1161/HYPERTENSIONAHA.118.12005 Ventola, 2017, Progress in Nanomedicine: Approved and Investigational Nanodrugs, P & T: a peer-reviewed journal for formulary management, 42, 742 Shen, 2017, High drug-loading nanomedicines: progress, current status, and prospects, Int. J. Nanomed., 12, 4085, 10.2147/IJN.S132780 Song, 2019, A high-loading drug delivery system based on magnetic nanomaterials modified by hyperbranched phenylboronic acid for tumor-targeting treatment with pH response, Colloids Surf., B, 182, 10.1016/j.colsurfb.2019.110375 Xu, 2019, Development of Hydrophilic Drug Encapsulation and Controlled Release Using a Modified Nanoprecipitation Method, Processes, 7, 331, 10.3390/pr7060331 Govender, 1999, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug, J. Control. Release, 57, 171, 10.1016/S0168-3659(98)00116-3 Massella, 2018, Overcoming the Limits of Flash Nanoprecipitation: Effective Loading of Hydrophilic Drug into Polymeric Nanoparticles with Controlled Structure, Polymers (Basel), 10, 1092, 10.3390/polym10101092 Español, 2016, Dual encapsulation of hydrophobic and hydrophilic drugs in PLGA nanoparticles by a single-step method: drug delivery and cytotoxicity assays, RSC Adv., 6, 111060, 10.1039/C6RA23620K Becker Peres, 2016, Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique, Colloids Surf., B, 140, 317, 10.1016/j.colsurfb.2015.12.033 Bilati, 2005, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, Eur. J. Pharm. Sci.: official journal of the European Federation for Pharmaceutical Sciences, 24, 67, 10.1016/j.ejps.2004.09.011 Honary, 2013, Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 2), Trop. J. Pharm. Res., 12 Forrest, 2018, USP Apparatus 4: a Valuable In Vitro Tool to Enable Formulation Development of Long-Acting Parenteral (LAP) Nanosuspension Formulations of Poorly Water-Soluble Compounds, AAPS PharmSciTech, 19, 413, 10.1208/s12249-017-0842-x Yuan, 2017, Development of a Flow-Through USP-4 Apparatus Drug Release Assay to Evaluate Doxorubicin Liposomes, AAPS J., 19, 150, 10.1208/s12248-016-9958-2 Tang, 2019, Development of a flow-through USP 4 apparatus drug release assay for the evaluation of amphotericin B liposome, Eur. J. Pharm. Biopharm., 134, 107, 10.1016/j.ejpb.2018.11.010 Andhariya, 2016, Recent advances in testing of microsphere drug delivery systems, Expert Opin. Drug Deliv., 13, 593, 10.1517/17425247.2016.1134484 Sievens-Figueroa, 2012, Using USP I and USP IV for discriminating dissolution rates of nano- and microparticle-loaded pharmaceutical strip-films, AAPS PharmSciTech, 13, 1473, 10.1208/s12249-012-9875-3 Costa, 2001, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci., 13, 123, 10.1016/S0928-0987(01)00095-1 Peppas, 2014, J. Control Release, 190, 31, 10.1016/S0168-3659(14)00482-9 Korsmeyer, 1983, Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharm., 15, 25, 10.1016/0378-5173(83)90064-9 Colby, M.R.a.R.H., Polymer Physics, ed. O. Oxford. 2003.