The irreducibility of the space of curves of given genus

Pierre Deligné, David Mumford

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. Abhyankar, Resolution of singularities of arithmetical surfaces,Proc. Conf. on Arith. Alg. Geom. at Purdue. 1963.

M. Artin, The implicit function theorem in algebraic geometry,Proc. Colloq. Alg. Geom., Bombay, 1968.

M. Artin, Some numerical criteria for contractibility,Am. J. Math.,84 (1962), p. 485.

J. Benabou, Thèse, Paris, 1966.

F. Enriques andChisini,Teoria geometrica delle equazioni e delle funzioni algebriche, Bologna, 1918.

W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves,Ann. of Math. (forthcoming).

J. Giraud,Cohomologie non abélienne, University of Columbia.

A. Grothendieck, Techniques de descente et théorèmes d’existence en géométrie algébrique, IV,Sem. Bourbaki,221, 1960–1961.

R. Hartshorne, Residues and Duality,Springer Lecture Notes,20, 1966.

D. Knutson, Algebraic spaces,Thesis, M.I.T., 1968.

J. Lipman, Rational singularities,Publ. Math. I.H.E.S., no 36 (1969).

M. Lichtenbaum, Curves over discrete valuation rings,Am. J. Math.,90 (1968), p. 380.

W. Manger, Die Klassen von topologischen Abbildungen einer geschlossenen Fläche auf sich,Math. Zeit.,44 (1939), p. 541.

D. Mumford,Geometric Invariant Theory, Springer-Verlag, 1965.

D. Mumford,Notes on seminar on moduli problems, Supplementary mimeographed notes printed at A.M.S. Woods Hole Summer Institute, 1964.

D. Mumford, Picard groups of moduli problems,Proc. Conf. on Arith. Alg. Geom. at Purdue, 1963.

A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux,Publ. Math. I.H.E.S., no 21.

M. Raynaud, Spécialisation du foncteur de Picard,Comptes rendus Acad. Sci.,264, p. 941 and p. 1001.

I. Šafarevich, Lectures on minimal models,Tata Institute Lectures notes, Bombay, 1966.

M. Schlessinger,Thesis, Harvard.

J.-P. Serre,Rigidité du foncteur de Jacobi d’échelon n ≥ 3, app. à l’exposé 17 du séminaire Cartan 60/61.

F. Severi andLöffler,Vorlesungen über algebraische Geometrie, Teubner, 1924.

A. Weil, Modules des surfaces de Riemann,Sém. Bourbaki, 168, 1957–58.