Sự tham gia của con đường tín hiệu Wnt và TCF7L2 trong bệnh tiểu đường: Hiểu biết hiện tại, tranh cãi và góc nhìn
Tóm tắt
Từ khóa
Tài liệu tham khảo
Moon RT, Brown JD, Torres M: WNTs modulate cell fate and behavior during vertebrate development. Trends Genet. 1997, 13: 157-162. 10.1016/S0168-9525(97)01093-7
Peifer M, Polakis P: Wnt signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science. 2000, 287: 1606-1609. 10.1126/science.287.5458.1606
Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982, 31: 99-109. 10.1016/0092-8674(82)90409-3
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW: Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997, 275: 1787-1790. 10.1126/science.275.5307.1787
Yi F, Brubaker PL, Jin T: TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem. 2005, 280: 1457-1464.
Jin T, Liu L: The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol. 2008, 22: 2383-2392. 10.1210/me.2008-0135
Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 2006, 127: 469-480. 10.1016/j.cell.2006.10.018
Rachner TD, Khosla S, Hofbauer LC: Osteoporosis: now and the future. Lancet. 2011, 377: 1276-1287. 10.1016/S0140-6736(10)62349-5
Naito AT, Shiojima I, Komuro I: Wnt signaling and aging-related heart disorders. Circ Res. 2010, 107: 1295-1303. 10.1161/CIRCRESAHA.110.223776
MacDonald BT, Tamai K, He X: Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009, 17: 9-26. 10.1016/j.devcel.2009.06.016
Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H: Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet. 1998, 19: 379-383. 10.1038/1270
Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006, 38: 320-323. 10.1038/ng1732
Schafer SA, Tschritter O, Machicao F, Thamer C, Stefan N, Gallwitz B, Holst JJ, Dekker JM, t Hart LM, Nijpels G: Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia. 2007, 50: 2443-2450. 10.1007/s00125-007-0753-6
Saxena R, Gianniny L, Burtt NP, Lyssenko V, Giuducci C, Sjogren M, Florez JC, Almgren P, Isomaa B, Orho-Melander M: Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes. 2006, 55: 2890-2895. 10.2337/db06-0381
Prokunina-Olsson L, Kaplan LM, Schadt EE, Collins FS: Alternative splicing of TCF7L2 gene in omental and subcutaneous adipose tissue and risk of type 2 diabetes. PLoS One. 2009, 4: e7231. 10.1371/journal.pone.0007231
Shu L, Matveyenko AV, Kerr-Conte J, Cho JH, McIntosh CH, Maedler K: Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet. 2009, 18: 2388-2399. 10.1093/hmg/ddp178
Shu L, Sauter NS, Schulthess FT, Matveyenko AV, Oberholzer J, Maedler K: Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes. 2008, 57: 645-653. 10.2337/db07-0847
Groves CJ, Zeggini E, Minton J, Frayling TM, Weedon MN, Rayner NW, Hitman GA, Walker M, Wiltshire S, Hattersley AT, McCarthy MI: Association analysis of 6, 736 U.K. subjects provides replication and confirms TCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk. Diabetes. 2006, 55: 2640-2644. 10.2337/db06-0355
Guo T, Hanson RL, Traurig M, Muller YL, Ma L, Mack J, Kobes S, Knowler WC, Bogardus C, Baier LJ: TCF7L2 is not a major susceptibility gene for type 2 diabetes in Pima Indians: analysis of 3, 501 individuals. Diabetes. 2007, 56: 3082-3088. 10.2337/db07-0621
Grant SF, Hakonarson H, Schwartz S: Can the genetics of type 1 and type 2 diabetes shed light on the genetics of latent autoimmune diabetes in adults?. Endocr Rev. 2010, 31: 183-193. 10.1210/er.2009-0029
Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L: Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008, 359: 2220-2232. 10.1056/NEJMoa0801869
Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, Sjogren M, Ling C, Eriksson KF, Lethagen AL: Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007, 117: 2155-2163. 10.1172/JCI30706
Jin T: The WNT signalling pathway and diabetes mellitus. Diabetologia. 2008, 51: 1771-1780. 10.1007/s00125-008-1084-y
Manolagas SC, Almeida M: Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol. 2007, 21: 2605-2614. 10.1210/me.2007-0259
Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC: Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem. 2007, 282: 27298-27305. 10.1074/jbc.M702811200
Jin T, George Fantus I, Sun J: Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cell Signal. 2008, 20: 1697-1704. 10.1016/j.cellsig.2008.04.014
Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R: The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell. 1987, 50: 649-657. 10.1016/0092-8674(87)90038-9
Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X: A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005, 438: 873-877. 10.1038/nature04185
Dierick H, Bejsovec A: Cellular mechanisms of wingless/Wnt signal transduction. Curr Top Dev Biol. 1999, 43: 153-190.
Stambolic V, Ruel L, Woodgett JR: Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Current biology : CB. 1996, 6: 1664-1668. 10.1016/S0960-9822(02)70790-2
Hino S, Tanji C, Nakayama KI, Kikuchi A: Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol. 2005, 25: 9063-9072. 10.1128/MCB.25.20.9063-9072.2005
Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X: LDL-receptor-related proteins in Wnt signal transduction. Nature. 2000, 407: 530-535. 10.1038/35035117
Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S: arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature. 2000, 407: 527-530. 10.1038/35035110
Hey PJ, Twells RC, Phillips MS, Yusuke N, Brown SD, Kawaguchi Y, Cox R, Guochun X, Dugan V, Hammond H: Cloning of a novel member of the low-density lipoprotein receptor family. Gene. 1998, 216: 103-111. 10.1016/S0378-1119(98)00311-4
Twells RC, Mein CA, Payne F, Veijola R, Gilbey M, Bright M, Timms A, Nakagawa Y, Snook H, Nutland S: Linkage and association mapping of the LRP5 locus on chromosome 11q13 in type 1 diabetes. Hum Genet. 2003, 113: 99-105.
Twells RC, Mein CA, Phillips MS, Hess JF, Veijola R, Gilbey M, Bright M, Metzker M, Lie BA, Kingsnorth A: Haplotype structure, LD blocks, and uneven recombination within the LRP5 gene. Genome Res. 2003, 13: 845-855. 10.1101/gr.563703
Guo YF, Xiong DH, Shen H, Zhao LJ, Xiao P, Guo Y, Wang W, Yang TL, Recker RR, Deng HW: Polymorphisms of the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family-based association study. Journal of medical genetics. 2006, 43: 798-803. 10.1136/jmg.2006.041715
Fujino T, Asaba H, Kang MJ, Ikeda Y, Sone H, Takada S, Kim DH, Ioka RX, Ono M, Tomoyori H: Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci U S A. 2003, 100: 229-234. 10.1073/pnas.0133792100
Kanazawa A, Tsukada S, Sekine A, Tsunoda T, Takahashi A, Kashiwagi A, Tanaka Y, Babazono T, Matsuda M, Kaku K: Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet. 2004, 75: 832-843. 10.1086/425340
van Tienen FH, Laeremans H, van der Kallen CJ, Smeets HJ: Wnt5b stimulates adipogenesis by activating PPARgamma, and inhibiting the beta-catenin dependent Wnt signaling pathway together with Wnt5a. Biochem Biophys Res Commun. 2009, 387: 207-211. 10.1016/j.bbrc.2009.07.004
Yang Y, Topol L, Lee H, Wu J: Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development. 2003, 130: 1003-1015. 10.1242/dev.00324
Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA: Inhibition of adipogenesis by Wnt signaling. Science. 2000, 289: 950-953. 10.1126/science.289.5481.950
Longo KA, Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC, Opp MR, MacDougald OA: Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem. 2004, 279: 35503-35509. 10.1074/jbc.M402937200
Vertino AM, Taylor-Jones JM, Longo KA, Bearden ED, Lane TF, McGehee RE, MacDougald OA, Peterson CA: Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. Mol Biol Cell. 2005, 16: 2039-2048. 10.1091/mbc.E04-08-0720
Schinner S, Ulgen F, Papewalis C, Schott M, Woelk A, Vidal-Puig A, Scherbaum WA: Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules. Diabetologia. 2008, 51: 147-154.
Murtaugh LC, Law AC, Dor Y, Melton DA: Beta-catenin is essential for pancreatic acinar but not islet development. Development. 2005, 132: 4663-4674. 10.1242/dev.02063
Papadopoulou S, Edlund H: Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function. Diabetes. 2005, 54: 2844-2851. 10.2337/diabetes.54.10.2844
Heiser PW, Lau J, Taketo MM, Herrera PL, Hebrok M: Stabilization of beta-catenin impacts pancreas growth. Development. 2006, 133: 2023-2032. 10.1242/dev.02366
Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV: PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996, 122: 983-995.
Rulifson IC, Karnik SK, Heiser PW, ten Berge D, Chen H, Gu X, Taketo MM, Nusse R, Hebrok M, Kim SK: Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci U S A. 2007, 104: 6247-6252. 10.1073/pnas.0701509104
Savic D, Ye H, Aneas I, Park SY, Bell GI, Nobrega MA: Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism. Genome Res. 2011, 21: 1417-1425. 10.1101/gr.123745.111
Angus-Hill ML, Elbert KM, Hidalgo J, Capecchi MR: T-cell factor 4 functions as a tumor suppressor whose disruption modulates colon cell proliferation and tumorigenesis. Proc Natl Acad Sci U S A. 2011, 108: 4914-4919. 10.1073/pnas.1102300108
Liu Z, Habener JF: Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem. 2008, 283: 8723-8735. 10.1074/jbc.M706105200
DasGupta R, Fuchs E: Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development. 1999, 126: 4557-4568.
Krutzfeldt J, Stoffel M: Regulation of wingless-type MMTV integration site family (WNT) signalling in pancreatic islets from wild-type and obese mice. Diabetologia. 2010, 53: 123-127. 10.1007/s00125-009-1578-2
Frayling TM: Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet. 2007, 8: 657-662.
Florez JC: The new type 2 diabetes gene TCF7L2. Curr Opin Clin Nutr Metab Care. 2007, 10: 391-396. 10.1097/MCO.0b013e3281e2c9be
Billings LK, Florez JC: The genetics of type 2 diabetes: what have we learned from GWAS?. Ann N Y Acad Sci. 2010, 1212: 59-77. 10.1111/j.1749-6632.2010.05838.x
Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ, O'Connell P, Stern MP: Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet. 1999, 64: 1127-1140. 10.1086/302316
Reynisdottir I, Thorleifsson G, Benediktsson R, Sigurdsson G, Emilsson V, Einarsdottir AS, Hjorleifsdottir EE, Orlygsdottir GT, Bjornsdottir GT, Saemundsdottir J: Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34–q35.2. Am J Hum Genet. 2003, 73: 323-335. 10.1086/377139
Cauchi S, Meyre D, Choquet H, Dina C, Born C, Marre M, Balkau B, Froguel P: TCF7L2 variation predicts hyperglycemia incidence in a French general population: the data from an epidemiological study on the Insulin Resistance Syndrome (DESIR) study. Diabetes. 2006, 55: 3189-3192. 10.2337/db06-0692
Chang YC, Chang TJ, Jiang YD, Kuo SS, Lee KC, Chiu KC, Chuang LM: Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes. 2007, 56: 2631-2637. 10.2337/db07-0421
Alibegovic AC, Sonne MP, Hojbjerre L, Hansen T, Pedersen O, van Hall G, Holst JJ, Stallknecht B, Dela F, Vaag A: The T-allele of TCF7L2 rs7903146 associates with a reduced compensation of insulin secretion for insulin resistance induced by 9 days of bed rest. Diabetes. 2010, 59: 836-843. 10.2337/db09-0918
Cornelis MC, Qi L, Kraft P, Hu FB: TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. Am J Clin Nutr. 2009, 89: 1256-1262. 10.3945/ajcn.2008.27058
da Silva Xavier G, Loder MK, McDonald A, Tarasov AI, Carzaniga R, Kronenberger K, Barg S, Rutter GA: TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes. 2009, 58: 894-905. 10.2337/db08-1187
Dabelea D, Dolan LM, D'Agostino R, Hernandez AM, McAteer JB, Hamman RF, Mayer-Davis EJ, Marcovina S, Lawrence JM, Pihoker C, Florez JC: Association testing of TCF7L2 polymorphisms with type 2 diabetes in multi-ethnic youth. Diabetologia. 2011, 54: 535-539. 10.1007/s00125-010-1982-7
Duan QL, Dube MP, Frasure-Smith N, Barhdadi A, Lesperance F, Theroux P, St-Onge J, Rouleau GA, McCaffery JM: Additive effects of obesity and TCF7L2 variants on risk for type 2 diabetes among cardiac patients. Diabetes Care. 2007, 30: 1621-1623. 10.2337/dc06-2421
Florez JC: Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes?. Diabetologia. 2008, 51: 1100-1110. 10.1007/s00125-008-1025-9
Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PI, Shuldiner AR, Knowler WC, Nathan DM, Altshuler D: TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med. 2006, 355: 241-250. 10.1056/NEJMoa062418
Gjesing AP, Kjems LL, Vestmar MA, Grarup N, Linneberg A, Deacon CF, Holst JJ, Pedersen O, Hansen T: Carriers of the TCF7L2 rs7903146 TT genotype have elevated levels of plasma glucose, serum proinsulin and plasma gastric inhibitory polypeptide (GIP) during a meal test. Diabetologia. 2011, 54: 103-110. 10.1007/s00125-010-1940-4
Gloyn AL, Braun M, Rorsman P: Type 2 diabetes susceptibility gene TCF7L2 and its role in beta-cell function. Diabetes. 2009, 58: 800-802. 10.2337/db09-0099
Gonzalez-Sanchez JL, Martinez-Larrad MT, Zabena C, Perez-Barba M, Serrano-Rios M: Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin:insulin ratio in the Spanish population. Diabetologia. 2008, 51: 1993-1997. 10.1007/s00125-008-1129-2
Ng MC, Park KS, Oh B, Tam CH, Cho YM, Shin HD, Lam VK, Ma RC, So WY, Cho YS: Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6, 719 Asians. Diabetes. 2008, 57: 2226-2233. 10.2337/db07-1583
Pilgaard K, Jensen CB, Schou JH, Lyssenko V, Wegner L, Brons C, Vilsboll T, Hansen T, Madsbad S, Holst JJ: The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. Diabetologia. 2009, 52: 1298-1307. 10.1007/s00125-009-1307-x
Vacik T, Stubbs JL, Lemke G: A novel mechanism for the transcriptional regulation of Wnt signaling in development. Genes Dev. 2011, 25: 1783-1795. 10.1101/gad.17227011
Le Bacquer O, Shu L, Marchand M, Neve B, Paroni F, Kerr Conte J, Pattou F, Froguel P, Maedler K: TCF7L2 splice variants have distinct effects on beta-cell turnover and function. Hum Mol Genet. 2011, 20: 1906-1915. 10.1093/hmg/ddr072
Prokunina-Olsson L, Welch C, Hansson O, Adhikari N, Scott LJ, Usher N, Tong M, Sprau A, Swift A, Bonnycastle LL: Tissue-specific alternative splicing of TCF7L2. Hum Mol Genet. 2009, 18: 3795-3804. 10.1093/hmg/ddp321
Ni Z, Anini Y, Fang X, Mills G, Brubaker PL, Jin T: Transcriptional activation of the proglucagon gene by lithium and beta-catenin in intestinal endocrine L cells. J Biol Chem. 2003, 278: 1380-1387. 10.1074/jbc.M206006200
Yi F, Sun J, Lim GE, Fantus IG, Brubaker PL, Jin T: Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells. Endocrinology. 2008, 149: 2341-2351. 10.1210/en.2007-1142
Cho YM, Kieffer TJ: K-cells and glucose-dependent insulinotropic polypeptide in health and disease. Vitam Horm. 2010, 84: 111-150.
Garcia-Martinez JM, Chocarro-Calvo A, Moya CM, Garcia-Jimenez C: WNT/beta-catenin increases the production of incretins by entero-endocrine cells. Diabetologia. 2009, 52: 1913-1924. 10.1007/s00125-009-1429-1
Gustafson B, Smith U: WNT signalling is both an inducer and effector of glucagon-like peptide-1. Diabetologia. 2008, 51: 1768-1770. 10.1007/s00125-008-1109-6
Gebhardt R, Hovhannisyan A: Organ patterning in the adult stage: the role of Wnt/beta-catenin signaling in liver zonation and beyond. Dev Dyn. 2010, 239: 45-55.
Liu H, Fergusson MM, Wu JJ, Rovira II, Liu J, Gavrilova O, Lu T, Bao J, Han D, Sack MN, Finkel T: Wnt signaling regulates hepatic metabolism. Sci Signal. 2011, 4: ra6. 10.1126/scisignal.2001249
Norton L, Fourcaudot M, Abdul-Ghani MA, Winnier D, Mehta FF, Jenkinson CP, Defronzo RA: Chromatin occupancy of transcription factor 7-like 2 (TCF7L2) and its role in hepatic glucose metabolism. Diabetologia. 2011.
Ahlzen M, Johansson LE, Cervin C, Tornqvist H, Groop L, Ridderstrale M: Expression of the transcription factor 7-like 2 gene (TCF7L2) in human adipocytes is down regulated by insulin. Biochem Biophys Res Commun. 2008, 370: 49-52. 10.1016/j.bbrc.2008.03.006
Brinkmeier ML, Potok MA, Davis SW, Camper SA: TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors. Dev Biol. 2007, 311: 396-407. 10.1016/j.ydbio.2007.08.046
Baggio LL, Drucker DJ: Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007, 132: 2131-2157. 10.1053/j.gastro.2007.03.054
Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD: A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996, 379: 69-72. 10.1038/379069a0
Greer EL, Brunet A: FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005, 24: 7410-7425. 10.1038/sj.onc.1209086
Accili D, Arden KC: FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004, 117: 421-426. 10.1016/S0092-8674(04)00452-0
Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC: Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science. 2005, 308: 1181-1184. 10.1126/science.1109083
Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H: Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun. 2001, 288: 275-279. 10.1006/bbrc.2001.5747
Almeida M, Han L, Ambrogini E, Weinstein RS, Manolagas SC: Glucocorticoids and tumor necrosis factor alpha increase oxidative stress and suppress Wnt protein signaling in osteoblasts. J Biol Chem. 2011, 286: 44326-44335. 10.1074/jbc.M111.283481
Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL: Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 2009, 284: 27438-27448. 10.1074/jbc.M109.023572
Almeida M: Unraveling the role of FoxOs in bone–insights from mouse models. Bone. 2011, 49: 319-327. 10.1016/j.bone.2011.05.023