The intrinsic antibiotic resistance to β-lactams, macrolides, and fluoroquinolones of mycobacteria is mediated by the whiB7 and tap genes

Russian Journal of Genetics - Tập 53 - Trang 1006-1015 - 2017
K. V. Shur1, D. A. Maslov1, N. E. Mikheecheva1,2, N. I. Akimova1, O. B. Bekker1, V. N. Danilenko1
1Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow oblast, Russia

Tóm tắt

The M. tuberculosis resistome includes a number of genes involved in intrinsic drug resistance. One of the major members of this system is the whiB7 gene encoding a transcription factor, which regulates expression of a number of genes—its regulon. In this study, we analyze the impact on intrinsic drug resistance levels of the whiB7 and tap genes and their prevalent mutants. The mutations found within whiB7 and tap genes in the genomes of strains belonging to Beijing and EAI-Manila lineages allowed us to investigate the new role of these genes in the intrinsic drug resistance of mycobacteria to β-lactams, fluoroquinolones, and macrolides and to assume their significance in the development of M. tuberculosis genotypes. Here we also established that the mutation in the tap gene–insC581, previously described, as a marker of the Beijing lineage, cannot be the marker due to its absence in a number of Beijing strains.

Tài liệu tham khảo

Nguyen, L. and Thompson, C.J., Foundations of antibiotic resistance in bacterial physiology: the mycobacterial paradigm, Trends Microbiol., 2006, vol. 14, no. 7, pp. 304–312. doi 10.1016/j.tim.2006.05.005 WHO, vol. 1: Global Tuberculosis Control: WHO Report 2015, 2015. doi 10.1017/CBO9781107415324.004 Perry, J.A., Westman, E.L., and Wright, G.D., The antibiotic resistome: what’s new?, Curr. Opin. Microbiol., 2014, vol. 21, pp. 45–50. doi 10.1016/j.mib.2014. 09.002 Colangeli, R., Helb, D., Vilchèze, C., et al., Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis, PLoS Pathog., 2007, vol. 3, no. 6. E87. doi 10.1371/journal.ppat.0030087 Madsen, C.T., Jakobsen, L., Buriánková, K., et al., Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis, J. Biol. Chem., 2005, vol. 280, no. 47, pp. 38942–38947. doi 10.1074/jbc.M505727200 Houghton, J.L., Green, K.D., Pricer, R.E., et al., Unexpected N-acetylation of capreomycin by mycobacterial Eis enzymes, J. Antimicrob. Chemother., 2013, vol. 68, no. 4, p. 800. doi 10.1093/jac/dks497 Demple, B., Signal transduction by nitric oxide in cellular stress responses, Mol. Cell. Biochem., 2002, vol. 234–235, no. 1–2, pp. 11–8. Demple, B., The Nexus of oxidative stress responses and antibiotic resistance mechanisms in Escherichia coli and Salmonella, Front. Antimicrob. Resist., 2016, pp. 191–197. doi 10.1128/9781555817572.ch13 McArthur, A.G. and Wright, G.D., Bioinformatics of antimicrobial resistance in the age of molecular epidemiology, Curr. Opin. Microbiol., 2015, vol. 27, pp. 45–50. doi 10.1016/j.mib.2015.07.004 Burian, J., Ramon-Garcia, S., Sweet, G., et al., The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance, J. Biol. Chem., 2012, vol. 287, no. 1, pp. 299–310. doi 10.1074/jbc.M111.302588 Ramón-García, S., Ng, C., Jensen, P.R., et al., WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria, J. Biol. Chem., 2013, vol. 288, no. 48, pp. 34514–34528. doi 10.1074/jbc.M113. 516385 Geiman, D.E., Raghunand, T.R., Agarwal, N., et al., Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes, Antimicrob. Agents Chemother., 2006, vol. 50, no. 8, pp. 2836–2841. doi 10.1128/AAC.00295-06 Homolka, S., Niemann, S., Russell, D.G., et al., Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival., PLoS Pathog., 2010, vol. 6, no. 7. E1000988. doi 10.1371/journal.ppat.1000988 Larsson, C., Luna, B., Ammerman, N.C., et al., Gene expression of Mycobacterium tuberculosis putative transcription factors whib1-7 in redox environments, PLoS One, 2012, vol. 7, no. 7, pp. e37516–e37516. doi 10.1371/journal.pone.0037516 Morris, R.P., Nguyen, L., Gatfield, J., et al., Ancestral antibiotic resistance in Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 34, pp. 12200–12205. doi 10.1073/pnas.0505446102 Buriánková, K., Doucet-Populaire, F., Dorson, O., et al., Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex, Antimicrob. Agents Chemother., 2004, vol. 48, no. 1, pp. 143–150. Zaunbrecher, M.A., Sikes, R.D., Metchock, B., et al., Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 47, pp. 20004–20009. doi 10.1073/pnas.0907925106 De Rossi, E., Arrigo, P., Bellinzoni, M., et al., The multidrug transporters belonging to Major Facilitator Superfamily (MFS) in Mycobacterium tuberculosis, Mol. Med., 2002, vol. 8, no. 11, pp. 714–724. Ramón-García, S., Mick, V., Dainese, E., et al., Functional and genetic characterization of the tap efflux pump in Mycobacterium bovis BCG, Antimicrob. Agents Chemother., 2012, vol. 56, no. 4, pp. 2074–2083. doi 10.1128/AAC.05946-11 Oldenburg, M., Krüger, A., Ferstl, R., et al., TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification, Science, 2012, vol. 337, no. 6098, pp. 1111–1115. doi 10.1126/science. 1220363 Murugasu-Oei, B., Tay, A., and Dick, T., Upregulation of stress response genes and ABC transporters in anaerobic stationary-phase Mycobacterium smegmatis, Mol. Gen. Genet., 1999, vol. 262, no. 4–5, pp. 677–682. doi 10.1007/s004380051130 Burian, J., Yim, G., Hsing, M., et al., The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV), Nucleic Acids Res., 2013, vol. 41, no. 22, pp. 10062–10076. doi 10.1093/nar/gkt751 Reeves, R. and Nissen, M.S., The A/T-DNA-binding domain of mammalian high mobility group I chromosomal proteins: a novel peptide motif for recognizing DNA structure, J. Biol. Chem., 1990, vol. 265, no. 15, pp. 8573–8582. doi 1692833 Campbell, P.J., Morlock, G.P., Sikes, R.D., et al., Molecular detection of mutations associated with firstand second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 2011, vol. 55, no. 5, pp. 2032–2041. doi 10.1128/AAC.01550-10 Ainsa, J.A., Blokpoel, M.C.J., Otal, I., et al., Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis, J. Bacteriol., 1998, vol. 180, no. 22, pp. 5836–5843. Adams, K.N., Takaki, K., Connolly, L.E., et al., Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism, Cell, 2011, vol. 145, no. 1, pp. 39–53. doi 10.1016/j.cell. 2011.02.022 Schürch, A.C., Kremer, K., Warren, R.M., et al., Mutations in the regulatory network underlie the recent clonal expansion of a dominant subclone of the Mycobacterium tuberculosis Beijing genotype, Infect. Genet. Evol., 2011, vol. 11, no. 3, pp. 587–597. doi 10.1016/j.meegid.2011.01.009 Nelson, R.M. and Long, G.L., A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction, Anal. Biochem., 1989, vol. 180, no. 1, pp. 147–151. Snapper, S.B., Melton, R.E., Mustafa, S., et al., Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis, Mol. Microbiol., 1990, vol. 4, no. 11, pp. 1911–1919. doi 10.1111/j.1365-2958.1990.tb02040.x Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: a Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed. doi 574.873224 1/1989 Blokpoel, M.C.J., Murphy, H.N., O’Toole, R., et al., Tetracycline-inducible gene regulation in mycobacteria, Nucleic Acids Res., 2005, vol. 33, no. 2. E22. doi 10.1093/nar/gni023 Bekker, O.B., Sokolov, D.N., Luzina, O.A., et al., Synthesis and activity of (+)-usnic acid and (−)-usnic acid derivatives containing 1,3-thiazole cycle against Mycobacterium tuberculosis, Med. Chem. Res., 2015, vol. 24, no. 7, pp. 2926–2938. doi 10.1007/s00044-015-1348-2 Johnson, M., Zaretskaya, I., Raytselis, Y., et al., NCBI BLAST: a better web interface., Nucleic Acids Res., 2008, vol. 36, pp. W5–9. doi 10.1093/nar/gkn201 Benson, D.A., Cavanaugh, M., Clark, K., et al., Gen-Bank, Nucleic Acids Res., 2013, vol. 41, no. D1, pp. D36–42. doi 10.1093/nar/gks1195 Maslov, D.A., Zaîchikova, M.V., Chernousova, L.N., et al., Resistance to pyrazinamide in Russian Mycobacterium tuberculosis isolates: PncA sequencing versus Bactec MGIT 960, Tuberculosis, 2015, vol. 95, no. 5, pp. 608–612. doi 10.1016/j.tube.2015.05.013 Zaychikova, M.V., Zakharevich, N.V., Sagaidak, M.O., et al., Mycobacterium tuberculosis type II toxin-antitoxin systems: genetic polymorphisms and functional properties and the possibility of their use for genotyping, PLoS One, 2015, vol. 10, no. 12. E0143682. doi 10.1371/journal.pone.0143682 Cowman, S., Burns, K., Benson, S., et al., The antimicrobial susceptibility of non-tuberculous mycobacteria, J. Infect., 2016, vol. 72, no. 3, pp. 324–331. doi 10.1016/j.jinf.2015.12.007 Bowman, J. and Ghosh, P., A complex regulatory network controlling intrinsic multidrug resistance in Mycobacterium smegmatis, Mol. Microbiol., 2014, vol. 91, no. 1, pp. 121–134. doi 10.1111/mmi.12448 Kim, K.H., An, D.R., Yoon, H.J., et al., Structure of Mycobacterium smegmatis Eis in complex with paromomycin., Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun., 2014, vol. 70, no. 9, pp. 1173–1179. doi 10.1107/S2053230X14017385 Reeves, A.Z., Campbell, P.J., Sultana, R., et al., Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5’ untranslated region of whiB7, Antimicrob. Agents Chemother., 2013, vol. 57, no. 4, pp. 1857–1865. doi 10.1128/AAC.02191-12 Köser, C.U., Bryant, J.M., Parkhill, J., et al., Consequences of whiB7 (Rv3197A) mutations in Beijing genotype isolates of the Mycobacterium tuberculosis complex, Antimicrob. Agents Chemother., 2013, vol. 57, no. 7, p. 3461. doi 10.1128/AAC.00626-13 Villellas, C., Aristimuño, L., Vitoria, M.-A., et al., Analysis of mutations in streptomycin-resistant strains reveals a simple and reliable genetic marker for identification of the Mycobacterium tuberculosis Beijing genotype, J. Clin. Microbiol., 2013, vol. 51, no. 7, pp. 2124–2130. doi 10.1128/JCM.01944-12