The interlaminar resistance of carbon fiber-Al laminate reinforced with hollow and core–shell microcapsules
Tài liệu tham khảo
Ning, 2015, Experimental and numerical study on the improvement of interlaminar mechanical properties of Al/CFRP laminates, J. Mater. Process. Technol., 216, 79, 10.1016/j.jmatprotec.2014.08.031
Dadej, 2019, On the effect of glass and carbon fiber hybridization in fiber metal laminates: Analytical, numerical and experimental investigation, Compos. Struct., 220, 250, 10.1016/j.compstruct.2019.03.051
T.L. Anderson, fracture mechanics: fundamentals and applications, Taylor & Francis Group, LLC2005.
Ríos, 2015, Determination of fracture toughness j on fiber-metal laminate type CARALL with sheets of aluminium 6061, Procedia Mater. Sci., 9, 530, 10.1016/j.mspro.2015.05.026
Williams, 1989, Chapter 1, - Fracture mechanics of anisotropic materials, 3, 10.1016/B978-0-444-87286-9.50005-X
Aradhana, 2018, High performance epoxy nanocomposite adhesive: Effect of nanofillers on adhesive strength, curing and degradation kinetics, Int. J. Adhes. Adhes., 84, 238, 10.1016/j.ijadhadh.2018.03.013
Correia, 2018, Effect of surface treatment on adhesively bonded aluminium-aluminium joints regarding aeronautical structures, Eng. Failure Anal., 84, 34, 10.1016/j.engfailanal.2017.10.010
Liu, 2017, Reliability analysis of adhesively bonded CFRP-to-steel double lap shear joint with thin outer adherends, Constr. Build. Mater., 141, 52, 10.1016/j.conbuildmat.2017.02.113
Trzepiecinski, 2018, Strength properties of aluminium/glass-fiber-reinforced laminate with additional epoxy adhesive film interlayer, Int. J. Adhes. Adhes., 85, 29, 10.1016/j.ijadhadh.2018.05.016
Bradley, 1991, Understanding the translation of neat resin toughness into delamination toughness in composites, Key Eng. Mater., 37, 161, 10.4028/www.scientific.net/KEM.37.161
Zakaria, 2017, Introduction of nanoclay-modified fiber metal laminates, Eng. Fract. Mech., 186, 436, 10.1016/j.engfracmech.2017.10.023
V.P. Brugemann, J. Sinke, H. de Boer, Fracture toughness testing in FML, 25th, Structural dynamics; IMAC XXV; 2007; Orlando, FL, Society for Experimental Mechanics, Bethel, Conn, 2007.
Bennati, 2009, An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite laminates, Compos. Sci. Technol., 69, 1735, 10.1016/j.compscitech.2009.01.019
Sundararaman, 1997, An unsymmetric double cantilever beam test for interfacial fracture toughness determination, Int. J. Solids Struct., 34, 799, 10.1016/S0020-7683(96)00055-8
Xu, 2016, Improvement of adhesion performance between aluminum alloy sheet and epoxy based on anodizing technique, Int. J. Adhes. Adhes., 70, 74, 10.1016/j.ijadhadh.2016.05.007
Nassir, 2020, Experimental and numerical characterization of titanium-based fibre metal laminates, Compos. Struct., 245, 10.1016/j.compstruct.2020.112398
L. Vertuccio, L. Guadagno, G. Spinelli, S. Russo, G. Iannuzzo, Effect of carbon nanotube and functionalized liquid rubber on mechanical and electrical properties of epoxy adhesives for aircraft structures, Composites, Part B 129(Supplement C) (2017) 1-10. https://doi.org/10.1016/j.compositesb.2017.07.021.
Patra, 2014, Interface fracture of sandwich composites: Influence of MWCNT sonicated epoxy resin, Compos. Sci. Technol., 101, 94, 10.1016/j.compscitech.2014.07.006
Khurram, 2018, Carbon nanotubes for enhanced interface of fiber metal laminate, Int. J. Adhes. Adhes., 86, 29, 10.1016/j.ijadhadh.2018.08.008
Laban, 2017, Enhancing mode I inter-laminar fracture toughness of aluminum/fiberglass fiber-metal laminates by combining surface pre-treatments, Int. J. Adhes. Adhes., 78, 234, 10.1016/j.ijadhadh.2017.08.008
Almuhammadi, 2014, Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes, Mater. Des., 53, 921, 10.1016/j.matdes.2013.07.081
Ekrem, 2018, Effects of polyvinyl alcohol nanofiber mats on the adhesion strength and fracture toughness of epoxy adhesive joints, Compos. B Eng., 138, 256, 10.1016/j.compositesb.2017.11.049
Quan, 2017, Fracture behaviour of epoxy adhesive joints modified with core-shell rubber nanoparticles, Eng. Fract. Mech., 182, 566, 10.1016/j.engfracmech.2017.05.032
Ullah, 2016, Synthesis and characterization of urea-formaldehyde microcapsules containing functionalized polydimethylsiloxanes, Procedia Eng., 148, 168, 10.1016/j.proeng.2016.06.519
White, 2001, Autonomic healing of polymer composites, Nature, 409, 794, 10.1038/35057232
Kessler, 2001, Self-activated healing of delamination damage in woven composites, Compos. A Appl. Sci. Manuf., 32, 683, 10.1016/S1359-835X(00)00149-4
Kessler, 2003, Self-healing structural composite materials, Compos. A Appl. Sci. Manuf., 34, 743, 10.1016/S1359-835X(03)00138-6
Jin, 2011, fracture and fatigue response of a self-healing epoxy adhesive, Polymer, 1
Jin, 2013, Fracture behavior of a self-healing, toughened epoxy adhesive, Int. J. Adhes. Adhes., 44, 157, 10.1016/j.ijadhadh.2013.02.015
Shokrian, 2019, The effects of Al surface treatment, adhesive thickness and microcapsule inclusion on the shear strength of bonded joints, Int. J. Adhes. Adhes., 89, 139, 10.1016/j.ijadhadh.2019.01.001
Yin, 2007, Self-healing epoxy composites – Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent, Compos. Sci. Technol., 67, 201, 10.1016/j.compscitech.2006.07.028
Jin, 2012, Self-healing thermoset using encapsulated epoxy-amine healing chemistry, Polymer, 53, 581, 10.1016/j.polymer.2011.12.005
Caruso, 2008, Full recovery of fracture toughness using a nontoxic solvent-based self-healing system, Adv. Funct. Mater., 18, 1898, 10.1002/adfm.200800300
Neuser, 2014, Fatigue response of solvent-based self-healing smart materials, Exp. Mech., 54, 293, 10.1007/s11340-013-9787-5
B.R.K. Blackman, A.J. Kinloch, Fracture Tests for Structural Adhesive Joints, in: A.Pavan, D.R.Moore, J.G.Williams, A. (Elsevier Science (Eds.) Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites, 2001.
Friedrich, 1989