The interactive functional biases of manual, language and attention systems

Deborah J. Serrien1, Louise O’Regan1
1School of Psychology, University of Nottingham, Nottingham, UK

Tóm tắt

AbstractHemispheric lateralisation is a fundamental principle of functional brain organisation. We studied two core cognitive functions—language and visuospatial attention—that typically lateralise in opposite cerebral hemispheres. In this work, we tested both left- and right-handed participants on lexical decision-making as well as on symmetry detection by means of a visual half-field paradigm with various target–distractor combinations simultaneously presented to opposite visual fields. Laterality indexes were analysed using a behavioural metrics in single individuals as well as between individuals. We observed that lateralisation of language and visuospatial attention as well as their relationship generally followed a left–right profile, albeit with differences as a function of handedness and target–distractor combination. In particular, right-handed individuals tended towards a typical pattern whereas left-handed individuals demonstrated increased individual variation and atypical organisation. That the atypical variants varied as a function of target–distractor combination and thus interhemispheric communication underlines its dynamic role in characterising lateralisation properties. The data further revealed distinctive relationships between right-handedness and left-hemispheric dominance for language together with right-hemispheric dominance for visuospatial processing. Overall, these findings illustrate the role of broader mechanisms in supporting hemispheric lateralisation of cognition and behaviour, relying on common principles but controlled by internal and external factors.

Từ khóa


Tài liệu tham khảo

Andersen, K. W., & Siebner, H. R. (2018). Mapping dexterity and handedness: Recent insights and future challenges. Current Opinion in Behavioral Sciences, 20, 123–129. https://doi.org/10.1016/j.cobeha.2017.12.020

Annett, M. (2002). Handedness and brain asymmetry: The right shift theory. Psychology Press, Taylor and Francis.

Atkinson, J., & Egeth, H. (1973). Right hemisphere superiority in visual orientation matching. Canadian Journal of Psychology, 27, 152–158. https://doi.org/10.1037/h0082464

Badzakova-Trajkov, G., Häberling, I. S., Roberts, R. P., & Corballis, M. C. (2010). Cerebral asymmetries: Complementary and independent processes. PLoS ONE, 5, e9682. https://doi.org/10.1371/journal.pone.0009682

Bareham, C. A., Bekinschtein, T. A., Scott, S. K., & Manly, T. (2015). Does left-handedness confer resistance to spatial bias? Scientific Reports, 5, 9162. https://doi.org/10.1038/srep09162

Bergert, S. (2010). Do our brain hemispheres exchange some stimulus aspects better than others? Neuropsychologia, 48, 1637–1643. https://doi.org/10.1016/j.neuropsychologia.2010.02.006

Bloom, J. S., & Hynd, G. W. (2005). The role of the corpus callosum in interhemispheric transfer of information: Excitation or inhibition? Neuropsychology Review, 15, 59–71. https://doi.org/10.1007/s11065-005-6252-y

Boles, D. B. (1990). What bilateral displays do. Brain and Cognition, 12, 205–228. https://doi.org/10.1016/0278-2626(90)90016-h.

Bryden, M. P. (1982). Laterality: Functional asymmetry in the intact brain. Academic Press.

Bryden, M. P., Hecaen, H., & DeAgostini, M. (1983). Patterns of cerebral organization. Brain and Language, 20, 249–262. https://doi.org/10.1016/0093-934x(83)90044-5

Cai, Q., Van der Haegen, L., & Brysbaert, M. (2013). Complementary hemispheric specialization for language production and visuospatial attention. Proceedings of the National Academy of Sciences USA, 110, E322–E330. https://doi.org/10.1073/pnas.1212956110

Chen, L., Wassermann, D., Abrams, D. A., Kochalka, J., Gallardo-Diez, G., & Menon, V. (2019). The visual word form area (VWFA) is part of both language and attention circuitry. Nature CommunIcations, 10, 5601. https://doi.org/10.1038/s41467-019-13634-z

Cherbuin, N., & Brinkman, C. (2006). Hemispheric interactions are different in left-handed individuals. Neuropsychology, 20, 700–707. https://doi.org/10.1037/0894-4105.20.6.700

Chiarello, C., & Maxfield, L. (1996). Varieties of interhemispheric inhibition, or how to keep a good hemisphere down. Brain and Cognition, 30, 81–108. https://doi.org/10.1006/brcg.1996.0006

Clarke, J. M., & Zaidel, E. (1994). Anatomical–behavioral relationships: Corpus callosum morphometry and hemispheric specialization. Behavioural Brain Research, 64, 185–202. https://doi.org/10.1093/brain/112.4.849

Corballis, M. C. (1989). Laterality and human evolution. Psychological Reviews, 96, 492–505. https://doi.org/10.1037/0033-295x.96.3.492

Corballis, M. C., Badzakova-Trajkov, G., & Häberling, I. S. (2012). Right hand, left brain: Genetic and evolutionary bases of cerebral asymmetries for language and manual action. Wiley Interdisciplinary Reviews: Cognitive Sciences, 3, 1–17. https://doi.org/10.1002/wcs.158

Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569–599. https://doi.org/10.1146/annurev-neuro-061010-113731

Coren, S., & Porac, C. (1997). Fifty centuries of right-handedness: The historical record. Science, 198, 631–632. https://doi.org/10.1126/science.335510.

Corey, D. M., Hurley, M. M., & Foundas, A. L. (2001). Right and left handedness defined: a multivariate approach using hand preference and hand performance measures. Neuropsychiatry, Neuropsychology and Behavioral Neurology, 14, 144–152.

Flöel, A., Jansen, A., Deppe, M., Kanowski, M., Konrad, C., Sommer, J., & Knecht, S. (2005). Atypical hemispheric dominance for attention: Functional MRI topography. Journal of Cerebral Blood Flow & Metabolism, 25, 1197–1208. https://doi.org/10.1038/sj.jcbfm.9600114

Frasnelli, E. (2013). Brain and behavior in invertebrates. Frontiers in Psychology, 4, 1. https://doi.org/10.3389/fpsyg.2013.00939

Gerrits, R., Verhelst, H., & Vingerhoets, G. (2020). Mirrored brain organization: Statistical anomaly or reversal of hemispheric functional segregation bias? Proceedings of the National Academy of Sciences USA, 117, 14057–14065. https://doi.org/10.1073/pnas.2002981117

Ghirlanda, S., & Vallortigara, G. (2004). The evolution of brain lateralization: A game-theoretical analysis of population structure. Proceedings of the Biological Sciences, 271, 853–857. https://doi.org/10.1098/rspb.2003.2669

Gong, T., & Shuai, L. (2012). Modelling the coevolution of joint attention and language. Proceedings of the Royal Society B, 279, 4643–4651. https://doi.org/10.1098/rspb.2012.1431

Groen, M. A., Whitehouse, A. J., Badcock, N. A., & Bishop, D. V. (2012). Does cerebral lateralization develop? A study using functional transcranial Doppler ultrasound assessing lateralization for language production and visuospatial memory. Brain and Behavior, 2, 256–269. https://doi.org/10.1002/brb3.56

Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301–307. https://doi.org/10.1016/s0896-6273(03)00838-9

Hécaen, H., & Sauguet, J. (1971). Cerebral dominance in left-handed subjects. Cortex, 7, 19–48. https://doi.org/10.1016/s0010-9452(71)80020-5

Howells, H., Puglisi, G., Leonetti, A., Vigano, L., Fornia, L., Simone, L., Forkel, S. J., Rossi, M., Riva, M., Cerri, G., & Bello, L. (2020). The role of left fronto-parietal tracts in hand selection: Evidence from neurosurgery. Cortex, 128, 297–311. https://doi.org/10.1016/j.cortex.2020.03.018

Howells, H., Thiebaut de Schotten, M., Dell’Acqua, F., Beyh, A., Zappalà, G., Leslie, A., Simmons, A., Murphy, D. G., & Catani, M. (2018). Frontoparietal tracts linked to lateralized hand preference and manual specialization. Cerebral Cortex, 28, 2482–2494. https://doi.org/10.1093/cercor/bhy040

Hugdahl, K. (2000). Lateralization of cognitive processes in the brain. Acta Psychologica, 105, 211–235. https://doi.org/10.1016/s0001-6918(00)00062-7

Hunter, Z. R., & Brysbaert, M. (2008). Visual half-field experiments are a good measure of cerebral language dominance if used properly: Evidence from fMRI. Neuropsychologia, 46, 316–325. https://doi.org/10.1016/j.neuropsychologia.2007.07.007

Iacoboni, M., & Zaidel, E. (1996). Hemispheric independence in word recognition: Evidence from unilateral and bilateral presentations. Brain and Language, 53, 121–140. https://doi.org/10.1006/brln.1996.0040

Jäncke, L., Peters, M., Schalug, G., Posse, S., Steinmetz, H., & Müller-Gärtner, H. W. (1998). Differential magnetic resonance signal change in human sensorimotor cortex to finger movements of different rate of the dominant and subdominant hand. Cognitive Brain Research, 6, 279–284. https://doi.org/10.1016/S0926-6410(98)00003-2

Karolis, V. R., Corbetta, M., & Thiebout de Schotten, M. (2019). The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nature Communications, 1417, 1–9. https://doi.org/10.1038/s41467-019-09344-1

Kimura, D. (1973a). Manual activity during speaking. I. Right-handers. Neuropsychologia, 11, 45–50. https://doi.org/10.1016/0028-3932(73)90063-8

Kimura, D. (1973b). Manual activity during speaking. II. Left-handers. Neuropsychologia, 11, 51–55. https://doi.org/10.1016/0028-3932(73)90064-x

Kinsbourne, M. (1987). Mechanisms of unilateral neglect. In M. Jeannerod (Ed.), Neurophysiological and neuropsychological aspects of spatial neglect (pp. 69–86). Elsevier Science.

Knecht, S., Dräger, B., Deppe, M., Bobe, L., Lohmann, H., Flöel, A., Ringelstein, E., & Henningsen, H. (2000). Handedness and hemispheric language dominance in healthy humans. Brain, 123, 2512–2518. https://doi.org/10.1093/brain/123.12.2512

Kootstra, G., de Boer, B., & Schomaker, L. R. B. (2011). Predicting eye fixations on complex visual stimuli using local symmetry. Cognitive Computation, 3, 223–240. https://doi.org/10.1007/s12559-010-9089-5

Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemispheres: A computational approach. Psychological Review, 94, 148–175. https://doi.org/10.1037/0033-295X.94.2.148.M

Levy, J. (1969). Possible basis for the evolution of lateral specialization of the human brain. Nature, 224, 614–625. https://doi.org/10.1038/224614a0

Liu, H., Stufflebeam, S. M., Sepulcre, J., Hedden, T., & Buckner, R. L. (2009). Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proceedings of the National Academy of Sciences USA, 106, 20499–20503. https://doi.org/10.1073/pnas.0908073106

Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. Freeman.

Martin, K., Jacobs, S., & Frey, S. H. (2011). Handedness-dependent and -independent cerebral asymmetries in the anterior intraparietal sulcus and ventral premotor cortex during grasp planning. NeuroImage, 57, 502–512. https://doi.org/10.1016/j.neuroimage.2011.04.036

Marzoli, D., Prete, G., & Tommasi, L. (2014). Perceptual asymmetries and handedness: A neglected link? Frontiers in Psychology, 5, 163. https://doi.org/10.3389/fpsyg.2014.00163

Measso, G., & Zaidel, E. (1990). Effect of response programming on hemispheric differences in lexical decision. Neuropsychologia, 28, 635–646. https://doi.org/10.1016/0028-3932(90)90118-8

Michel, G. F. (2021). Handedness development: A model for investigating the development of hemispheric specialization and interhemispheric coordination. Symmetry. https://www.mdpi.com/2073-8994/13/6/992

Mohr, B., Pulvermüller, F., & Zaidel, E. (1994). Lexical decision after left, right, and bilateral presentation of function words, content words and non-words: Evidence for interhemispheric interaction. Neuropsychologia, 32, 105–124. https://doi.org/10.1016/0028-3932(94)90073-6

O’Regan, L., & Serrien, D. J. (2018). Individual differences and hemispheric asymmetries for language and spatial attention. Frontiers in Human Neuroscience, 12, 380. https://doi.org/10.3389/fnhum.2018.00380

Peirce, J. W., & MacAskill, M. R. (2018). Building experiments in PsychoPy. Sage.

Perrone-Bertolotti, M., Lemonnier, S., & Baciu, M. (2013). Behavioral evidence for inter-hemispheric cooperation during a lexical decision task: A divided visual field experiment. Frontiers in Human Neuroscience, 7, 316. https://doi.org/10.3389/fnhum.2013.00316

Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89. https://doi.org/10.1146/annurev-neuro-062111-150525

Pool, E. M., Rehme, A. K., Fink, G. R., Eickhoff, S. B., & Grefkes, C. (2014). Handedness and effective connectivity of the motor system. NeuroImage, 99, 451–460. https://doi.org/10.1016/j.neuroimage.2014.05.048.23

Powell, J. L., Kamp, G. J., & García-Finaña, M. (2012). Association between language and spatial laterality and cognitive ability: An fMRI study. NeuroImage, 59, 1818–1829. https://doi.org/10.1016/j.neuroimage.2011.08.040

Prete, G., Fabri, M., & Tommasi, L. (2020). Asymmetry for symmetry: Right-hemispheric superiority in bi-dimensional symmetry perception. Symmetry. https://www.mdpi.com/2073-8994/9/5/76

Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. The Journal of Anatomy, 197, 335–359. https://doi.org/10.1046/j.1469-7580.2000.19730335.x

Serrien, D. J., & Sovijärvi-Spapé, M. M. (2016). Manual dexterity: Functional lateralisation patterns and motor efficiency. Brain and Cognition, 108, 42–46. https://doi.org/10.1016/j.bandc.2016.07.005

Springer, J. A., Binder, J. R., Hammeke, T. A., Swanson, S. J., Frost, J. A., Bellgowan, P. S., Brewer, C. C., Perry, H. M., Morris, G. L., & Mueller, W. M. (1999). Language dominance in neurologically normal and epilepsy subjects: A functional MRI study. Brain, 122, 2033–2046. https://doi.org/10.1093/brain/122.11.2033

Teuber, H. L. (1974). Why two brains? In F. O. Schmidts & F. G. Worden (Eds.), The neurosciences: Third study program (pp. 71–74). MIT Press.

Thiebaut de Schotten, M., Dell’Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G. M., & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14, 1245–1246. https://doi.org/10.1038/nn.2905

Triggs, W., Calvanio, R., Levine, M., Heaton, R., & Heilman, K. (2000). Predicting hand preference with performance on motor tasks. Cortex, 36, 679–689. https://doi.org/10.1016/s0010-9452(08)70545-8

Tussis, L., Sollmann, N., Boeckh-Behrens, T., Meyer, B., & Krieg, S. M. (2016). Language function distribution in left-handers: A navigated transcranial magnetic stimulation study. Neuropsychologia, 82, 65–73. https://doi.org/10.1016/j.neuropsychologia.2016.01.010

Tzourio, N., Crivello, F., Mellet, E., Nkanga-Ngila, B., & Mazoyer, B. (1998). Functional anatomy of dominance for speech comprehension in left handers versus right handers. NeuroImage, 8, 1–16. https://doi.org/10.1006/nimg.1998.0343

Tzourio-Mazoyer, N. (2016). Intra- and inter-hemispheric connectivity supporting hemispheric specialization. In H. Kennedy, D. C. Van Essen, & Y. Christen (Eds.), Micro-, meso- and macro-connectomics of the brain. Research and perspectives in neurosciences. Springer International Publishing. https://doi.org/10.1007/978-3-319-27777-6_9

Van der Haegen, L., & Brysbaert, M. (2018). The relationship between behavioral language laterality, face laterality and language performance in left-handers. PLoS ONE, 13, e0208696. https://doi.org/10.1371/journal.pone.0208696

Verma, A., Van der Haegen, L., & Brysbaert, M. (2013). Symmetry detection in typically and atypically speech lateralized individuals: A visual half-field study. Neuropsychologia, 51, 2611–2619. https://doi.org/10.1016/j.neuropsychologia.2013.09.005

Vingerhoets, G. (2019). Phenotypes in hemispheric functional segregation? Perspectives and challenges. Physics of Life Reviews, 30, 1–18. https://doi.org/10.1016/j.plrev.2019.06.002

Vogel, J. J., Bowers, C. A., & Vogel, D. S. (2003). Cerebral lateralization of spatial abilities: A meta-analysis. Brain and Cognition, 52, 197–204. https://doi.org/10.1016/s0278-2626(03)00056-3

Wagemans, J. (1995). Detection of visual symmetries. Spatial Vision, 9, 9–32. https://doi.org/10.1163/156856895x00098

Weems, S. A., & Reggia, J. A. (2004). Hemispheric specialization and independence for word recognition: A comparison of three computational models. Brain and Language, 89, 554–568. https://doi.org/10.1016/j.bandl.2004.02.001

Wilkinson, D. T., & Halligan, P. W. (2002). The effects of stimulus symmetry on landmark judgments in left and right visual fields. Neuropsychologia, 40, 1045–1058. https://doi.org/10.1016/s0028-3932(01)00142-7

Xu, J., Patrick, J., Gannon, P. J., Emmorey, K., Smith, J. F., Allen, R., & Braun, A. R. (2009). Symbolic gestures and spoken language are processed by a common neural system. Proceedings of the National Academy of Sciences USA, 106, 20664–20669. https://doi.org/10.1073/pnas.0909197106