The instabilities of gravity waves of finite amplitude in deep water I. Superharmonics

The Royal Society - Tập 360 Số 1703 - Trang 471-488 - 1978
M. S. Longuet‐Higgins1
1Google Scholar Find this author on PubMed

Tóm tắt

In this paper we embark on a calculation of all the normal-mode perturbations of nonlinear, irrotational gravity waves as a function of the wave steepness. The method is to use as coordinates the stream-function and velocity potential in the steady, unperturbed wave (seen in a reference frame moving with the phase speed) together with the time t. The dependent quantities are the cartesian displacements and the perturbed stream function at the free surface. To begin we investigate the ‘superharmonics’, i.e. those perturbations having the same horizontal scale as the fundamental wave, or less. When the steepness of the fundamental is small, the normal modes take the form of travelling waves superposed on the basic nonlinear wave. As the steepness increases the frequency of each perturbation tends generally to be diminished. At a steepness ak ≈ 0.436 it appears that the two lowest modes coalesce and an instability arises. There is evidence that this critical steepness corresponds precisely with the steepness at which the phase velocity is a maximum, considered as a function of ak. The calculations are facilitated by the discovery of some new identities between the coefficients in Stokes’s expansion for waves of finite amplitude.

Từ khóa


Tài liệu tham khảo

1967, T he d isin teg ratio n of w ave tra in s on deep w ater. 1. Theory, J. F Iuid Mech., 27, 417

10.1098/rsta.1977.0113

Levi-C ivita T. 1925 D eterm in atio n rigoureuse des ondes p erm anentes d 'am pleur finie. M ath. A n n . 93 264-314.

Longuet-H iggins M. S. 197 s In te g ra l properties of periodic g ra v ity w aves of finite am plitude. Proc. R . Soc. Lond. A 342 157-174.

Longuet-H iggins M. S. 1978 Some new relations betw een Stokes's coefficients in th e th eo ry of g ra v ity w aves. J . In st. M ath. A p p lic. (in th e press.)

Cokelet E ., 1976, T he deform ation of steep surface w aves on w ater. I. A num erical m eth o d of co m p u tatio n . Proc. R, Soc. Lond. A, 350, 1

L onguet-H iggins M. S. & F o x M. J . H . 1977 T heory of th e alm ost-highest w ave. The in n er solution. J . F Iu id M ech. 80 721-741.

L onguet-H iggins M. S. & F o x M. J . H . 1978 T heory of th e alm ost-highest w ave. I I . M atching an d an aly tic extension. J . F Iu id M ech. 85 769-782.

Longuet-H iggins M. S. & Phillips O. M. 1962 P hase velocity effects in te rtia ry wrave interactio n s. J . F Iu id M ech. 12 333-336.

L onguet-H iggins M. S. & S tew art R . W . i960 Changes in th e form of sh o rt g ra v ity w aves on long w aves a n d tid a l cu rren ts. J . F Iu id M ech. 8 565-583.

Schw artz L. W . 1974 C om puter extension an d a n aly tic co n tin u atio n of S tokes's expansion for g ra v ity w aves. J . F Iu id M ech. 62 553-578.

Stokes Sir G. G. 1880 S upplem ent to a p ap er on th e th eo ry of oscillatory w aves. M athe matical and Physical Papers vol. 1 pp. 314-326. C am bridge U n IV ersity Press.