Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phức hợp trung tâm ở côn trùng như một mô hình cho sự phát triển não bộ dị thời—bối cảnh, khái niệm và công cụ
Tóm tắt
Não bộ côn trùng trưởng thành được cấu thành từ các khu vực nơ-ron có mặt ở hầu hết các loại. Tuy nhiên, kích thước tương đối, hình dạng và thời điểm phát triển khác nhau giữa các loài. Đa dạng về hình thái não bộ côn trùng trưởng thành đã được mô tả sâu sắc trong khi các cơ chế di truyền của sự phát triển não chủ yếu được nghiên cứu ở Drosophila melanogaster. Tuy nhiên, vẫn chưa rõ các cơ chế tế bào và di truyền nào làm cơ sở cho sự tiến hóa của đa dạng khu vực thần kinh hoặc sự phát triển dị thời. Trong bài viết này, chúng tôi đề xuất một cách tiếp cận mới để nghiên cứu các câu hỏi này. Chúng tôi gợi ý sử dụng chỉnh sửa gen để đánh dấu các tế bào thần kinh đồng hình trong ruồi D. melanogaster, bọ cánh cứng Tribolium castaneum, và châu chấu đồng Gryllus bimaculatus để điều tra sự khác biệt phát triển dẫn đến sự đa dạng của não bộ. Một khía cạnh thú vị là sự dị thời được quan sát trong sự phát triển của phức hợp trung tâm. Organ phức hợp trung tâm được hình thành trong quá trình phát triển phôi (như ở Gryllus) nhưng ở Drosophila, nó phát sinh trong giai đoạn ấu trùng muộn và giai đoạn biến hình. Ở Tribolium, nó hình thành một phần trong quá trình phát triển phôi. Cuối cùng, chúng tôi trình bày các công cụ cho nghiên cứu não ở Tribolium bao gồm việc tái tạo 3D và dữ liệu hóa sinh miễn dịch của não bộ giai đoạn đầu và tạo ra các dòng hình ảnh não biến đổi gen. Hơn nữa, chúng tôi mô tả các dòng báo cáo đánh dấu các thể nấm và phản ánh sự biểu hiện của gen đánh dấu tế bào thần kinh Tc-asense tương ứng.
Từ khóa
#não bộ côn trùng #phát triển dị thời #phức hợp trung tâm #Drosophila melanogaster #Tribolium castaneum #Gryllus bimaculatusTài liệu tham khảo
Arendt D (2005) Genes and homology in nervous system evolution: comparing gene functions, expression patterns, and cell type molecular fingerprints. Theory Biosci 124:185–197
Bayraktar OA, Doe CQ (2013) Combinatorial temporal patterning in progenitors expands neural diversity. Nature 498:449–455. doi:10.1038/nature12266
Bayraktar O, Boone JQ, Drummond ML, Doe CQ (2010) Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex. Neural Dev 5:26. doi:10.1186/1749-8104-5-26
Bello BC, Izergina N, Caussinus E, Reichert H (2008) Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev 3:5. doi:10.1186/1749-8104-3-5
Berghammer AJ, Klingler M, Wimmer EA (1999) A universal marker for transgenic insects. Nature 402:370–371
Biffar L, Stollewerk A (2014) Conservation and evolutionary modifications of neuroblast expression patterns in insects. Dev Biol 388:103–116. doi:10.1016/j.ydbio.2014.01.028
Binzer M, Heuer CM, Kollmann M et al (2014) Neuropeptidome of Tribolium castaneum antennal lobes and mushroom bodies. J Comp Neurol 522:337–357. doi:10.1002/cne.23399
Boone JQ, Doe CQ (2008) Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev Neurobiol 68:1185–1195. doi:10.1002/dneu.20648
Bowman SK, Rolland V, Betschinger J et al (2008) The tumor suppressors brat and numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell 14:535–546. doi:10.1016/j.devcel.2008.03.004
Boyan G, Liu Y (2014) Timelines in the insect brain: fates of identified neural stem cells generating the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 224:37–51. doi:10.1007/s00427-013-0462-8
Boyan GS, Reichert H (2011) Mechanisms for complexity in the brain: generating the insect central complex. Trends Neurosci 34:247–257. doi:10.1016/j.tins.2011.02.002
Boyan GS, Williams JLD (1997) Embryonic development of the pars intercerebralis/central complex of the grasshopper. Dev Genes Evol 207:317–329. doi:10.1007/s004270050119
Boyan G, Williams L (2011) Embryonic development of the insect central complex: insights from lineages in the grasshopper and Drosophila. Arthropod Struct Dev 40:334–348. doi:10.1016/j.asd.2011.02.005
Boyan GS, Bräunig P, Posser S, Williams JLD (2003) Embryonic development of the sensory innervation of the clypeo-labral complex: further support for serially homologous appendages in the locust. Arthropod Struct Dev 32:289–302
Boyan G, Herbert Z, Williams L (2010a) Cell death shapes embryonic lineages of the central complex in the grasshopper Schistocerca gregaria. J Morphol 271:949–959. doi:10.1002/jmor.10847
Boyan G, Williams L, Legl A, Herbert Z (2010b) Proliferative cell types in embryonic lineages of the central complex of the grasshopper Schistocerca gregaria. Cell Tissue Res 341:259–277. doi:10.1007/s00441-010-0992-6
Brandt R, Rohlfing T, Rybak J et al (2005) Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol 492:1–19. doi:10.1002/cne.20644
Brody T, Odenwald WF (2005) Regulation of temporal identities during Drosophila neuroblast lineage development. Curr Opin Cell Biol 17:672–675. doi:10.1016/j.ceb.2005.09.013
Brown SJ, Mahaffey JP, Lorenzen MD et al (1999) Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol Dev 1:11–15
Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12:R85–R86
Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, New York
Cardona A, Saalfeld S, Preibisch S et al (2010) An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. doi:10.1371/journal.pbio.1000502
Carney TD, Miller MR, Robinson KJ et al (2012) Functional genomics identifies neural stem cell sub-type expression profiles and genes regulating neuroblast homeostasis. Dev Biol 361:137–146. doi:10.1016/j.ydbio.2011.10.020
Curtis CD, Brisson JA, DeCamillis MA et al (2001) Molecular characterization of Cephalothorax, the Tribolium ortholog of sex combs reduced. Genesis 30:12–20
Denes AS, Jekely G, Steinmetz PR et al (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129:277–288
Dönitz J, Schmitt-Engel C, Grossmann D et al (2015) iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum. Nucleic Acids Res 43:D720–D725. doi:10.1093/nar/gku1054
Dreyer D, Vitt H, Dippel S et al (2010) 3D standard brain of the red flour beetle Tribolium castaneum: a tool to study metamorphic development and adult plasticity. Front Syst Neurosci 4:3. doi:10.3389/neuro.06.003.2010
Egger B, Chell JM, Brand AH (2008) Insights into neural stem cell biology from flies. Philos Trans R Soc Lond B Biol Sci 363:39–56. doi:10.1098/rstb.2006.2011
El Jundi B, Heinze S, Lenschow C et al (2009a) The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis. Front Syst Neurosci 3:21. doi:10.3389/neuro.06.021.2009
El Jundi B, Huetteroth W, Kurylas AE, Schachtner J (2009b) Anisometric brain dimorphism revisited: implementation of a volumetric 3D standard brain in Manduca sexta. J Comp Neurol 517:210–225. doi:10.1002/cne.22150
Eriksson BJ, Stollewerk A (2010) Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis. Proc Natl Acad Sci U S A 107:22576–22581. doi:10.1073/pnas.1008822108
Farris SM, Strausfeld NJ (2003) A unique mushroom body substructure common to basal cockroaches and to termites. J Comp Neurol 456:305–320. doi:10.1002/cne.10517
Gilles AF, Schinko JB, Averof M (2015) Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. Dev Camb Engl 142:2832–2839. doi:10.1242/dev.125054
Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Harvard
Hanesch U, Fischbach K-F, Heisenberg M (1989) Neuronal architecture of the central complex in drosophila melanogaster. Cell Tissue Res 257:343–366. doi:10.1007/BF00261838
Hanström B (1925) Comparison between the brains of the newly hatched larva and the imago of Pieris brassicae. EntTidskr 46:43–52
Hanström B (1928) Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere unter Berücksichtigung seiner Funktion. Springer, Berlin
Hartenstein V, Stollewerk A (2015) The evolution of early neurogenesis. Dev Cell 32:390–407. doi:10.1016/j.devcel.2015.02.004
Hartenstein V, Spindler S, Pereanu W, Fung S (2008) The development of the Drosophila larval brain. Adv Exp Med Biol 628:1–31. doi:10.1007/978-0-387-78261-4_1
Heinze S (2015) Neuroethology: unweaving the senses of direction. Curr Biol CB 25:R1034–R1037. doi:10.1016/j.cub.2015.09.003
Hinke W (1961) Das relative postembryonale Wachstum der Hirnteile von Culex pipiens, Drosophila melanogaster und Drosophila-mutanten. Z Für Morphol Ökol Tiere 50:81–118
Holmgren NF (1916) Zur vergleichenden Anatomie des Gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden, und Insekten. Vorstudien zu einer Phylogenie der Arthropoden. K Sven Vetenskapsakad Handl 56:1–303
Homberg U (1985) Interneurons of the central complex in the bee brain Apis mellifera. J Insect Physiol 31:251–264
Homberg U (2008) Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct Dev 37:347–362. doi:10.1016/j.asd.2008.01.008
Homberg U, Hildebrand JG (1994) Postembryonic development of gamma-aminobutyric acid-like immunoreactivity in the brain of the sphinx moth manduca sexta. J Comp Neurol 339:132–149. doi:10.1002/cne.903390112
Ito K, Shinomiya K, Ito M et al (2014) A systematic nomenclature for the insect brain. Neuron 81:755–765. doi:10.1016/j.neuron.2013.12.017
Jawlowski H (1936) Über den Gehirnbau der Käfer. Z Morph Ökol Tiere 32:67–91
Jenett A, Rubin GM, Ngo T-TB et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001. doi:10.1016/j.celrep.2012.09.011
Jiang Y, Reichert H (2012) Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain. Neural Dev 7:3. doi:10.1186/1749-8104-7-3
Kaiser A (2014) Immuncytochemische Färbungen und 3D-Rekonstruktionen am Zentralkomplex der Westlichen Honigbiene Apis mellifera
Kollmann M, Huetteroth W, Schachtner J (2011) Brain organization in Collembola (springtails). Arthropod Struct Dev 40:304–316. doi:10.1016/j.asd.2011.02.003
Kumar A, Fung S, Lichtneckert R et al (2009) Arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropil. J Comp Neurol 517:87–104. doi:10.1002/cne.22112
Kurylas AE, Rohlfing T, Krofczik S et al (2008) Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res 333:125–145. doi:10.1007/s00441-008-0620-x
Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91
Lorenzen MD, Berghammer AJ, Brown SJ et al (2003) piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol 12:433–440
Lowe CJ, Wu M, Salic A et al (2003) Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113:853–865
Miller SC, Miyata K, Brown SJ, Tomoyasu Y (2012) Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi. PLoS One 7, e47431. doi:10.1371/journal.pone.0047431
Mishra M, Oke A, Lebel C et al (2010) Pph13 and orthodenticle define a dual regulatory pathway for photoreceptor cell morphogenesis and function. Dev Camb Engl 137:2895–2904. doi:10.1242/dev.051722
Miyawaki K, Mito T, Sarashina I et al (2004) Involvement of wingless/armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev 121:119–130
Nakamura T, Yoshizaki M, Ogawa S et al (2010) Imaging of transgenic cricket embryos reveals cell movements consistent with a syncytial patterning mechanism. Curr Biol CB 20:1641–1647. doi:10.1016/j.cub.2010.07.044
Panov AA (1959) Structure of the insect brain at successive stages of postembryonic development. II. The central body. Entomol Rev 38:276–283
Parker RJ, Auld VJ (2006) Roles of glia in the Drosophila nervous system. Semin Cell Dev Biol 17:66–77. doi:10.1016/j.semcdb.2005.11.012
Peel AD, Schanda J, Grossmann D et al (2013) Tc-knirps plays different roles in the specification of antennal and mandibular parasegment boundaries and is regulated by a pair-rule gene in the beetle Tribolium castaneum. BMC Dev Biol 13:25. doi:10.1186/1471-213X-13-25
Pereanu W, Younossi-Hartenstein A, Lovick J et al (2011) Lineage-based analysis of the development of the central complex of the Drosophila brain. J Comp Neurol 519:661–689
Pfeiffer K, Homberg U (2014) Organization and functional roles of the central complex in the insect brain. Annu Rev Entomol 59:165–184. doi:10.1146/annurev-ento-011613-162031
Pfeiffer BD, Jenett A, Hammonds AS et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105:9715–9720. doi:10.1073/pnas.0803697105
Posnien N, Koniszewski NDB, Hein HJ, Bucher G (2011) Candidate gene screen in the red flour beetle Tribolium reveals Six3 as ancient regulator of anterior median head and central complex development. PLoS Genet 7, e1002418. doi:10.1371/journal.pgen.1002416
Power ME (1943) The brain of Drosophila melanogaster. J Morphol 72:517–559
Rein K, Zöckler M, Mader MT et al (2002) The Drosophila standard brain. Curr Biol CB 12:227–231
Renn SC, Armstrong JD, Yang M et al (1999) Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol 41:189–207
Riebli N, Viktorin G, Reichert H (2013) Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila. Neural Dev 8:6. doi:10.1186/1749-8104-8-6
Rybak J, Kuß A, Lamecker H et al (2010) The digital bee brain: integrating and managing neurons in a common 3D reference system. Front Syst Neurosci. doi:10.3389/fnsys.2010.00030
Sarrazin AF, Peel AD, Averof M (2012) A segmentation clock with two-segment periodicity in insects.
Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea + Hexapoda). Arthropod Struct Dev 34:257–299. doi:10.1016/j.asd.2005.04.003
Schinko JB, Weber M, Viktorinova I et al (2010) Functionality of the GAL4/UAS system in Tribolium requires the use of endogenous core promoters. BMC Dev Biol 10:53
Schinko J, Hillebrand K, Bucher G (2012) Heat shock-mediated misexpression of genes in the beetle Tribolium castaneum. Dev Genes Evol Dev Genes Evol: 287–98
Schmitt-Engel C, Schultheis D, Schwirz J et al (2015) The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. Nat Commun. doi:10.1038/ncomms8822
Sheng G, Thouvenot E, Schmucker D et al (1997) Direct regulation of rhodopsin 1 by Pax-6/eyeless in Drosophila: evidence for a conserved function in photoreceptors. Genes Dev 11:1122–1131
Skeath JB, Thor S (2003) Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 13:8–15. doi:10.1016/S0959-4388(03)00007-2
Skoulakis EM, Kalderon D, Davis RL (1993) Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron 11:197–208
Snodgrass RE (1935) Principles of insect morphology. McGRaw Hill, New York
Spindler SR, Hartenstein V (2010) The Drosophila neural lineages: a model system to study brain development and circuitry. Dev Genes Evol 220:1–10. doi:10.1007/s00427-010-0323-7
Steinmetz PR, Urbach R, Posnien N et al (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. Evodevo 1:14
Stollewerk A (2016) A flexible genetic toolkit for arthropod neurogenesis. Philos Trans R Soc Lond B Biol Sci. doi:10.1098/rstb.2015.0044
Stollewerk A, Simpson P (2005) Evolution of early development of the nervous system: a comparison between arthropods. Bioessays 27:874–883. doi:10.1002/bies.20276
Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg
Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34:235–256. doi:10.1016/j.asd.2005.04.001
Strausfeld NJ, Hirth F (2013) Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340:157–161. doi:10.1126/science.1231828
Strausfeld NJ, Strausfeld CM, Loesel R et al (2006) Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proc Biol Sci 273:1857–1866. doi:10.1098/rspb.2006.3536
Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291. doi:10.1002/cne.21948
Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638
Takemura S, Bharioke A, Lu Z et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181. doi:10.1038/nature12450
Technau GM, Berger C, Urbach R (2006) Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila. Dev Dyn 235:861–869
Tomer R, Denes AS, Tessmar-Raible K, Arendt D (2010) Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142:800–809
Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575–578
Trauner J, Schinko J, Lorenzen MD et al (2009) Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biol 7:73
Ungerer P, Scholtz G (2008) Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata. Proc Biol Sci 275:369–376. doi:10.1098/rspb.2007.1391
Urbach R, Technau GM (2003) Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 130:3621–3637
Urbach R, Technau GM (2004) Neuroblast formation and patterning during early brain development in Drosophila. Bioessays 26:739–751
Viktorin G, Riebli N, Popkova A et al (2011) Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev Biol 356:553–565. doi:10.1016/j.ydbio.2011.06.013
Watanabe T, Noji S, Mito T (2014) Gene knockout by targeted mutagenesis in a hemimetabolous insect, the two-spotted cricket Gryllus bimaculatus, using TALENs. Methods San Diego Calif 69:17–21. doi:10.1016/j.ymeth.2014.05.006
Weber H (1966) Grundriss der Insektenkunde, 4th edn. Gustav Fischer Verlag, Stuttgart
Wegerhoff R, Breidbach O (1992) Structure and development of the larval central complex in a holometabolous insect, the beetle Tenebrio molitor. Cell Tissue Res 268:341–358
Wegerhoff R, Breidbach O, Lobemeier M (1996) Development of locustatachykinin immunopositive neurons in the central complex of the beetle Tenebrio molitor. J Comp Neurol 375:157–166. doi:10.1002/(SICI)1096-9861(19961104)375:1<157::AID-CNE10>3.0.CO;2-S
Wheeler SR, Carrico ML, Wilson BA et al (2003) The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification. Development 130:4373–4381
Wheeler SR, Carrico ML, Wilson BA, Skeath JB (2005) The Tribolium columnar genes reveal conservation and plasticity in neural precursor patterning along the embryonic dorsal-ventral axis. Dev Biol 279:491–500
Williams JLD (1975) Anatomical studies of the insect central nervous system: a ground plan of the midbrain and an introduction to the central complex in the locust Schistocerca gregaria (Orthoptera). J Zool 204:1269–1280
Williams JL, Güntner M, Boyan G (2005) Building the central complex of the grasshopper Schistocerca gregaria: temporal topology organizes the neuroarchitecture of the w, x, y, z tracts. Arthropod Struct Dev 34:97–110
Xiong WC, Okano H, Patel NH et al (1994) repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system. Genes Dev 8:981–994
Yang JS, Awasaki T, Yu H-H et al (2013) Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex: lineage analysis of central complex neurons. J Comp Neurol 521:2645–2662. doi:10.1002/cne.23339
Young JM, Armstrong JD (2010a) Building the central complex in Drosophila: the generation and development of distinct neural subsets. J Comp Neurol 518:1525–1541
Young JM, Armstrong JD (2010b) Structure of the adult central complex in Drosophila: organization of distinct neuronal subsets. J Comp Neurol 518:1500–1524. doi:10.1002/cne.22284
Zeng V, Ewen-Campen B, Horch HW et al (2013) Developmental gene discovery in a hemimetabolous insect: de novo assembly and annotation of a transcriptome for the cricket Gryllus bimaculatus. PLoS One 8, e61479. doi:10.1371/journal.pone.0061479