The influences of reactive nanoparticles alloying on grain boundary and melting properties about Sn3.0Ag0.5Cu solder
Tài liệu tham khảo
Kang, 1994, Lead (Pb)-free solders for electronic packaging[J], J. Electron. Mater., 23, 701, 10.1007/BF02651362
Suganuma, 2001, Advances in lead-free electronics soldering[J], Curr. Opin. Solid State Mater. Sci., 5, 55, 10.1016/S1359-0286(00)00036-X
Zeng, 2005, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability[J], J. Appl. Phys., 97, 750, 10.1063/1.1839637
Ke, 2011, Analysis and experimental verification of the competing degradation mechanisms for solder joints under electron current stressing[J], Acta Mater., 59, 2462, 10.1016/j.actamat.2010.12.048
Yoon, 1997, Thermodynamics-aided alloy design and evaluation of Pb-free solder, Sn-Bi-In-Zn system[J], Acta Mater., 45, 951, 10.1016/S1359-6454(96)00253-4
Drienovsky, 2015, Influence of cerium addition on microstructure and properties of Sn–Cu–(Ag) solder alloys[J], Mater. Sci. Eng., A, 623, 83, 10.1016/j.msea.2014.11.033
Yee Mei Leong, 2016, Soldering characteristics and properties of Sn-1.0Ag-0.5Cu solder with minor aluminum addition, Materials, 9, 522, 10.3390/ma9070522
Hu, 2017, Influences of Ag addition to Sn-58Bi solder on SnBi/Cu interfacial reaction[J], Mater. Lett., 214, 142, 10.1016/j.matlet.2017.11.127
Mayappan, 2010, Effect of Bi addition on the activation energy for the growth of Cu5Zn8 intermetallic in the Sn–Zn lead-free solder[J], Intermetallics, 18, 730, 10.1016/j.intermet.2009.11.016
Chen, 2006, Effect of Cu diffusion through Ni on the interfacial reactions of Sn3.5Ag0.75Cu and SnPb solders with Au/Ni/Cu substrate during aging[J], Mater. Lett., 60, 1669, 10.1016/j.matlet.2005.11.093
Li, 2006, Effects of Sb addition on tensile strength of Sn–3.5Ag–0.7Cu solder alloy and joint[J], Thin Solid Films, 504, 421, 10.1016/j.tsf.2005.09.060
Shen, 2006, Strengthening effects of ZrO2 nanoparticles on the microstructure and microhardness of Sn-3.5Ag lead-free solder[J], J. Electron. Mater., 35, 1672, 10.1007/s11664-006-0216-8
Tai, 2005, Processing and creep properties of Sn-Cu composite solders with small amounts of nanosized Ag reinforcement additions[J], J. Electron. Mater., 34, 1357, 10.1007/s11664-005-0190-6
Ervina, 2013, A review: influence of nano particles reinforced on solder alloy[J], Solder. Surf. Mt. Technol., 25, 229, 10.1108/SSMT-11-2012-0026
Tsao, 2010, Effects of Nano-TiO2 additions on thermal analysis, microstructure and tensile properties of Sn3.5Ag0.25Cu solder[J], Mater. Des., 31, 990, 10.1016/j.matdes.2009.08.008
Tsao, 2012, Influence of TiO2 nanoparticles addition on the microstructural and mechanical properties of Sn0.7Cu nano-composite solder[J], Mater. Sci. Eng., 545, 194, 10.1016/j.msea.2012.03.025
Tsao, 2010, Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder[J], Mater. Des., 31, 4831, 10.1016/j.matdes.2010.04.033
Gain, 2011, Effect of additions of ZrO2 nanoparticles on the microstructure and shear strength of Sn-Ag-Cu solder on Au/Ni metallized Cu pads[J], Microelectron. Reliab., 51, 2306, 10.1016/j.microrel.2011.03.042
Lin, 2003, An investigation of nanoparticles addition on solidification kinetics and microstructure development of tin/lead solder[J], Mater. Sci. Eng., A, A360, 285, 10.1016/S0921-5093(03)00466-0
Hu, 2018, Effect of Cu6Sn5 nanoparticle on thermal behavior, mechanical properties and interfacial reaction of Sn3.0Ag0.5Cu solder alloys[J], J. Mater. Sci. Mater. Electron., 29, 15983, 10.1007/s10854-018-9684-x
Han, 2011, Development of a Sn-Ag-Cu solder reinforced with Ni-coated carbon nanotubes[J], J. Mater. Sci., 22, 315
Yakymovych, 2017, Nanocomposite SAC solders: morphology, electrical and mechanical properties of Sn–3.8Ag–0.7Cu solders by adding Co nanoparticles[J], J. Mater. Sci. Mater. Electron., 28, 10965, 10.1007/s10854-017-6877-7
Lin, 2002, The influence of copper nanopowders on microstructure and hardness of lead–tin solder[J], Mater. Lett., 53, 333, 10.1016/S0167-577X(01)00503-1
Guo, 2003, Evaluation of creep behavior of near-eutectic Sn-Ag solders containing small amount of alloy additions[J], Mater. Sci. Eng., 351, 190, 10.1016/S0921-5093(02)00853-5
Shen, 2013, Nanoindentation study on the creep resistance of SnBi solder alloy with reactive nano-metallic fillers[J], Mater. Sci. Eng., 561, 232, 10.1016/j.msea.2012.10.076
Shen, 2017, Enhancing creep resistance of SnBi solder alloy with non-reactive nano fillers: a study using nanoindentation[J], J. Alloys Compd., 729, 498, 10.1016/j.jallcom.2017.09.177
El-Daly, 2014, Structural characterization and creep resistance of nano-silicon carbide reinforced Sn–1.0Ag–0.5Cu lead-free solder alloy[J], Mater. Des., 55, 837, 10.1016/j.matdes.2013.10.043
Nai, 2009, Interfacial intermetallic growth and shear strength of lead-free composite solder joints[J], J. Alloys Compd., 473, 100, 10.1016/j.jallcom.2008.05.070
Shi, 2008, Creep property of composite solders reinforced by nano-sized particles[J], J. Mater. Sci. Mater. Electron., 19, 349, 10.1007/s10854-007-9327-0
Babicheva, 2016, Elastic moduli of nanocrystalline binary Al alloys with Fe, Co, Ti, Mg and Pb alloying elements[J], Phil. Mag., 96, 1598, 10.1080/14786435.2016.1171416
Babicheva, 2015, Effect of grain boundary segregations of Fe, Co, Cu, Ti, Mg and Pb on small plastic deformation of nanocrystalline Al[J], Comput. Mater. Sci., 98, 410, 10.1016/j.commatsci.2014.11.038
Li, 2020, Additive manufacturing-driven design optimization: building direction and structural topology[J], Addit. Manuf., 36, 101406
Tsao, 2011, Evolution of nano-Ag3Sn particle formation on Cu–Sn intermetallic compounds of Sn3.5Ag0.5Cu composite solder/Cu during soldering[J], J. Alloys Compd., 509, 2326, 10.1016/j.jallcom.2010.11.010
Yakymovych, 2016, Morphology and shear strength of lead-free solder joints with Sn3.0Ag0.5Cu solder paste reinforced with ceramic nanoparticles[J], J. Electron. Mater., 45, 6143, 10.1007/s11664-016-4832-7