The influence of the integral manifold shape on the onset of relaxation oscillations

L. I. Kononenko1
1Sobolev Institute of Mathematics, Novosibirsk, Russia

Tóm tắt

The relaxation oscillations are studied of a singularly perturbed system of ordinary differential equations with m slow and n fast variables (m × n) in the two cases: (1) m = n = 1 (1 × 1) and (2) m = 2, n = 1 (2 × 1). As sufficient conditions for the existence of relaxation oscillations there some general class is described of the functions determining the slow manifold for this system.

Từ khóa


Tài liệu tham khảo

A. A. Andronov,A. A. Vitt, and S. E. Khaikin, Theory of Oscillators (Pergamon Press, Oxford, 1966; Nauka, Moscow, 1981). E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations (Nauka, Moscow, 1975; Plenum, 1980). A. K. Zvonkin and M. A. Shubin, “Nonstandard Analysis and Singular Perturbations,” Uspekhi Mat. Nauk 39(2), 77–127 (1984). V. M. Gol’dshtein and V. A. Sobolev, Qualitative Analysis of Singularly Perturbed Systems (Inst. Math., Novosibirsk, 1988) [in Russian]. L. I. Kononenko, “Relaxation Oscillations in Singular Systems with Slow and Fast Variables,” Sibirsk. Zh. Industr. Mat. 7(3), 102–110 (2004). L. I. Kononenko, “Conditions for Existence of Relaxation Oscillations in Singular Systems of Low Dimension,” Sibirsk. Zh. Industr. Mat. 8(3), 87–92 (2005) [J. Appl. Industr. Math. 1 (1), 45–49 (2007)]. Yu. A. Mitropol’skii and O. B. Lykova, Integral Manifolds in Nonlinear Mechanics (Nauka, Moscow, 1973) [in Russian]. L. I. Kononenko and V. A. Sobolev, “Asymptotic Decomposition of Slow Integral Manifolds,” Sibirsk. Mat. Zh. 35(6), 1264–1278 (1994) [Siberian Math. J. 35 (6), 1119–1132 (1994)]. L. I. Kononenko, “Integral Surfaces in a Mathematical Model of a Catalytic Oxidation Reaction,” Izv. Akad. Estestv. Nauk, Ser. Mat., Mat. Model., Inform., Upravlenie 1(4), 53–59 (1997). L. I. Kononenko, “On Smoothness of Slow Surfaces of Singularly Perturbed Systems,” Sibirsk. Zh. Industr. Mat. 5(2), 109–125 (2002). E. A. Shchepakina, “Some Singularly Perturbed Models of Combustion in Multiphase Media,” Sibirsk. Zh. Industr. Mat. 6(4), 142–157 (2003). C. Lobry, T. Sari, and S. Touhami, “Fast and Slow Feedback in Systems Theory,” J. Biol. Systems 7(3), 307–331 (1999). V. A. Sobolev and E. A. Shchepakina, “Integral Surfaces with Change of Stability,” Izv. Akad. Estestv. Nauk, Ser. Mat., Mat. Model., Inform., Upravlenie 1(3), 151–175 (1997). T. Poston and I. Stewart, Catastrophe Theory and Its Applications (Pitman, London, 1978; Mir, Moscow, 1980). V.M. Gol’dshtein, L. I. Kononenko, M. Z. Lazman, V. A. Sobolev, and G. S. Yablonskii, “Qualitative Analysis of Dynamical Properties of an Isothermal Catalytic Stirred Tank Reactor,” in Mathematical Problems of Chemical Kinetics (Nauka, Novosibirsk, 1989), pp. 176–204. P. Szmolyan and M. Wechselberger, “Relaxation Oscillations in R 3,” J. Differential Equations 200(1), 69–104 (2004).