The influence of size, shape and vessel geometry on nanoparticle distribution
Tóm tắt
Từ khóa
Tài liệu tham khảo
Almeida JPM, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine 6(5):815–835
Barber J, Alberding J, Restrepo J, Secomb T (2008) Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann Biomed Eng 36(10):1690–1698
Bell GI, Dembo M, Bongrand P (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J 45(6):1051–1064
Chang K-C, Tees DFJ, Hammer DA (2000) The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc Nat Acad Sci 97(21):11262–11267
Chauvierre C, Labarre D, Couvreur P, Vauthier C (2003) Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm Res 20(11):1786–1793
Chen H, Ruckenstein E (2009) Nanoparticle aggregation in the presence of a block copolymer. J Chem Phys 131(24):244904–244907
Chen H, Ruckenstein E (2011) Aggregation of nanoparticles in a block copolymer bilayer. J Colloid Interface Sci 363(2):573–578
Cho K, Wang X, Nie S, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316
Christian DA, Cai S, Garbuzenko OB, Harada T, Zajac AL, Minko T, Discher DE (2009) Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharm 6(5):1343–1352
Cozens-Roberts C, Lauffenburger DA, Quinn JA (1990a) Receptor-mediated cell attachment and detachment kinetics. I. Probabilistic model and analysis. Biophys J 58(4):841–856
Cozens-Roberts C, Quinn JA, Lauffenberger DA (1990b) Receptor-mediated adhesion phenomena. Model studies with the radical-flow detachment assay. Biophys J 58(1):107–125
Decuzzi P, Ferrari M (2006) The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27(30):5307–5314
Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141(3):320–327
Doshi N, Prabhakarpandian B, Rea-Ramsey A, Pant K, Sundaram S, Mitragotri S (2010) Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. J Control Release 146(2):196–200
Einstein A (1956) In: Fürth R (ed) Investigations on the theory of Brownian Movement, translated by A. D. Cowper (1926, reprinted 1956), Dover Publ., New York
Ermak DL, Mccammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69(4):1352–1360
Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58(14):1456–1459
Freitas RA Jr (ed) (1999) Nanomedicine. Volume I: basic capabilities. Landes Bioscience, Georgetown
Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255
Gentile F, Ferrari M, Decuzzi P (2008) The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology. Ann Biomed Eng 36(2):254–261
Haun JB, Hammer DA (2008) Quantifying nanoparticle adhesion mediated by specific molecular interactions. Langmuir 24(16):8821–8832
Hoganson DM, Howard PI II, Spool ID, Burns OH, Gilmore JR, Vacanti JP (2010) Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold. Tissue Eng Part A 16(5):1469–1477
Kona S, Dong J-F, Liu Y, Tan J, Nguyen KT (2012) Biodegradable nanoparticles mimicking platelet binding as a targeted and controlled drug delivery system. Int J Pharm 423(2):516–524
Lee TR, Chang YS, Choi JB, Liu WK, Kim YJ (2009) Numerical simulation of a nanoparticle focusing lens in a microfluidic channel by using immersed finite element method. J Nanosci Nanotechnol 9(12):7407–7411
Li A, Ahmadi G (1992) Dispersion and deposition of spherical-particles from point sources in a turbulent channel flow. Aerosol Sci Tech 16(4):209–226
Li M, Panagi Z, Avgoustakis K, Reineke J (2012) Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int J Nanomed 7:1345–1356
Liu Y, Liu WK, Belytschko T, Patankar N, To AC, Kopacz A, Chung JH (2007) Immersed electrokinetic finite element method. Int J Numer Meth Eng 71(4):379–405
Liu J, Weller GER, Zern B, Ayyaswamy PS, Eckmann DM, Muzykantov VR, Radhakrishnan R (2010) Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments. Proc Nat Acad Sci 107(38):16530–16535
Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 3(2):181–194
Longest PW, Kleinstreuer C (2003) Comparison of blood particle deposition models for non-parallel flow domains. J Biomech 36(3):421–430
Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C (1997) Biologically erodable microsphere as potential oral drug delivery system. Nature 386(6623):410–414
Mody NA, King MR (2007) Influence of Brownian motion on blood platelet flow behavior and adhesive dynamics near a planar wall. Langmuir 23(11):6321–6328
Mori N, Kumagae M, Nakamura K (1998) Brownian dynamics simulation for suspensions of oblong-particles under shear flow. Rheol Acta 37(2):151–157
Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, Mitragotri S, Muzykantov VR (2008) Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 16(8):1450–1458
Muzykantov VR, Radhakrishnan R, Eckmann DM (2012) Dynamic factors controlling targeting nanocarriers to vascular endothelium. Curr Drug Metab 13(1):70–81
Nasongkla N, Bey E, Ren JM, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao JM (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6(11):2427–2430
Peppas NA (2006) Intelligent biomaterials as pharmaceutical carriers in microfabricated and nanoscale devices. MRS Bull 31(11):888–893
Prabhakarpandian B, Pant K, Scott R, Patillo C, Irimia D, Kiani M, Sundaram S (2008) Synthetic microvascular networks for quantitative analysis of particle adhesion. Biomed Microdevices 10(4):585–595
Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu AM, Mallikarjuana NN, Manohar S, Liang HF, Kulkarni AR, Sung HW, Sairam M, Aminabhavi TM (2005) Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. J Control Release 108(2–3):193–214
Saad Y, Schultz MH (1986) Gmres—a generalized minimal residual algorithm for solving nonsymmetric linear-systems. Siam J Sci Stat Comp 7(3):856–869
Sanhai WR, Sakamoto JH, Canady R, Ferrari M (2008) Seven challenges for nanomedicine. Nat Nano 3(5):242–244
Shah S, Liu Y (2011) Modeling particle shape-dependent dynamics in nanomedicine. J Nanosci Nanotechnol 11(2):919–928
Sharma N, Patankar NA (2004) Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations. J Comput Phys 201(2):466–486
Shuvaev VV, Ilies MA, Simone E, Zaitsev S, Kim Y, Cai S, Mahmud A, Dziubla T, Muro S, Discher DE, Muzykantov VR (2011) Endothelial targeting of antibody-decorated polymeric filomicelles. ACS Nano 5(9):6991–6999
Stolnik S, Illum L, Davis SS (1995) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 16(2–3):195–214
Sukhorukov GB, Mohwald H (2007) Multifunctional cargo systems for biotechnology. Trend Biotechnol 25(3):93–98
Tan J, Thomas A, Liu Y (2012) Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter 8(6):1934–1946
Tousi N, Wang B, Pant K, Kiani MF, Prabhakarpandian B (2010) Preferential adhesion of leukocytes near bifurcations is endothelium independent. Microvasc Res 80(3):384–388
Ward MD, Hammer DA (1993) A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophys J 64(3):936–959
Wischgoll T, Choy JS, Kassab GS (2009) Extraction of morphometry and branching angles of porcine coronary arterial tree from CT images. Am J Physiol Heart Circu Physiol 297(5):H1949–H1955
Xiong W, Zhang J (2012) Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects. Biomech Model Mechanobiol 11(3):575–583