Ảnh hưởng của chuyển động đất theo kiểu xung do hiệu ứng định hướng đến việc kích hoạt lở đất

Zhiyuan Li1, Guangqi Chen1,2, Zishuang Han1, Hemanta Hazarika1, Mingyao Xia3, Chaofan Feng1
1Graduate School of Engineering, Kyushu University, Fukuoka, Japan
2School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, China
3The State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China

Tóm tắt

Các trận lở đất do động đất gây ra đe dọa đến tính mạng con người, cơ sở hạ tầng và môi trường. Vào năm 2016, trận động đất Kumamoto với độ lớn Mw 7.1 đã gây ra nhiều trận lở đất rộng rãi. Các trận lở đất này chủ yếu tập trung ở khu vực Aso, nơi có sự di chuyển theo hướng trước của đứt gãy. Trong khi đó, một số chuyển động mặt đất theo kiểu xung (PLGM) đã được phát hiện ở khu vực này. Để làm rõ lý do cho những trận lở đất trong sự kiện Mw 7.1, chúng tôi đề xuất hai giả thuyết: (1) Xung tốc độ của PLGM là yếu tố then chốt trong việc kích hoạt lở đất. (2) Ở hướng trước của đứt gãy, khu vực có PLGM đáng kể do hiệu ứng định hướng tương ứng với khu vực lở đất rộng rãi. Trong nghiên cứu này, trước tiên, xung tốc độ của PLGM đã được xác định và phân tích. Sau đó, để xác thực giả thuyết đầu tiên, sự cố dốc dưới các chuyển động mặt đất khác nhau được phân tích thông qua phân tích biến dạng gián đoạn (DDA). Thêm vào đó, để xác thực giả thuyết thứ hai, các chuyển động mặt đất do Mw 7.1 gây ra được mô phỏng bằng phương pháp sai phân hữu hạn (FDM). Hơn nữa, sự liên quan giữa phân bố các tham số chuyển động mặt đất và lở đất rộng rãi được phân tích. Kết quả cho thấy, nghiên cứu này chỉ ra rằng xung tốc độ với năng lượng lớn hơn có đóng góp đáng kể cho lở đất. Hơn nữa, nghiên cứu này cũng xác thực hiệu ứng định hướng đặc trưng trong sự kiện Mw 7.1, điều này gây ra nhiều PLGM và tăng thêm khả năng xảy ra lở đất. Hơn nữa, các tham số chuyển động mặt đất được mô phỏng có ý nghĩa hơn trong khu vực lở đất rộng rãi. Những kết quả này hỗ trợ mạnh mẽ cho hai giả thuyết. Nghiên cứu này cung cấp một phương pháp phân tích tính ổn định của dốc xem xét PLGM do hiệu ứng định hướng gây ra. Hy vọng rằng nghiên cứu này có thể mang lại lợi ích lớn cho việc dự đoán lở đất tiềm năng trong các khu vực gần đứt gãy.

Từ khóa

#lở đất #chuyển động mặt đất #xung tốc độ #động đất #hiệu ứng định hướng

Tài liệu tham khảo

Antwi Buah P, Zhang Y, He J, Yu P, Xiang C, Fu H, He Y, Liu J (2023) Evaluating the dynamic response and failure process of a rock slope under pulse-like ground motions. Geomat Nat Hazards Risk 14:2167613 Aoi S, Fujiwara H (1999) 3D finite-difference method using discontinuous grids. Bull Seismol Soc Am 89:918–930 Aoi S, Honda R, Morikawa N, Sekiguchi H, Suzuki H, Hayakawa Y, Kunugi T, Fujiwara H (2008) Three-dimensional finite difference simulation of long-period ground motions for the 2003 Tokachi-oki, Japan, earthquake. J Geophys Res Solid Earth 113(B7) Arias A (1970) A measure of earthquake intensity. Seism Des Nucl Power Plants 438–483 Asano K, Iwata T (2016) Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data. Earth Planets Space 68:147 Baker JW (2007) Quantitative classification of near-fault ground motions using wavelet analysis. Bull Seismol Soc Am 97:1486–1501 Bertero VV, Mahin SA, Herrera RA (1978) A seismic design implications of near-fault San Fernando earthquake records. Earthq Eng Struct Dyn 6:31–42 Bray JD, Rodriguez-Marek A (2004) Characterization of forward-directivity ground motions in the near-fault region. Soil Dyn Earthq Eng 24:815–828 Cerjan C, Kosloff D, Kosloff R, Reshef M (1985) A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics 50:705–708 Chang Z, Sun X, Zhai C, Zhao JX, Xie L (2016) An improved energy-based approach for selecting pulse-like ground motions. Earthq Eng Struct Dyn 45:2405–2411 Chen G, Xia M, Thuy DT, Zhang Y (2021) A possible mechanism of earthquake-induced landslides focusing on pulse-like ground motions. Landslides 18:1641–1657 Dadfar B, El Naggar MH, Nastev M (2018) Vulnerability of buried energy pipelines subject to earthquake-triggered transverse landslides in permafrost thawing slopes. J Pipeline Syst Eng Pract 9:04018015 Dang K, Sassa K, Fukuoka H, Sakai N, Sato Y, Takara K, Quang LH, Loi DH, Van Tien P, Ha ND (2016) Mechanism of two rapid and long-runout landslides in the 16 April 2016 Kumamoto earthquake using a ring-shear apparatus and computer simulation (LS-RAPID). Landslides 13:1525–1534 Dang P, Cui J, Liu Q (2022) Parameter estimation for predicting near-fault strong ground motion and its application to Lushan earthquake in China. Soil Dyn Earthq Eng 156:107223 Gorum T, Fan X, van Westen CJ, Huang RQ, Xu Q, Tang C, Wang G (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133:152–167 Graves RW (1996) Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull Seismol Soc Am 86:1091–1106 Havenith H-B, Torgoev A, Braun A, Schlögel R, Micu M (2016) A new classification of earthquake-induced landslide event sizes based on seismotectonic, topographic, climatic and geologic factors. Geoenviron Disasters 3:6 Hung C, Lin G-W, Syu H-S, Chen C-W, Yen H-Y (2018) Analysis of the Aso-Bridge landslide during the 2016 Kumamoto earthquakes in Japan. Bull Eng Geol Environ 77:1439–1449 Hung C, Liu C-H, Lin G-W, Leshchinsky B (2019) The Aso-Bridge coseismic landslide: a numerical investigation of failure and runout behavior using finite and discrete element methods. Bull Eng Geol Environ 78:2459–2472 Jampole E, Miranda E, Deierlein G (2018) Effective incremental ground velocity for estimating the peak sliding displacement of rigid structures to pulse-like earthquake ground motions. J Eng Mech 144:04018113 Kayabali K, Beyaz T (2011) Strong motion attenuation relationship for Turkey—a different perspective. Bull Eng Geol Environ 70:467–481 Kubo H, Suzuki W, Aoi S, Sekiguchi H (2016) Source rupture processes of the 2016 Kumamoto, Japan, earthquakes estimated from strong-motion waveforms. Earth Planets Space 68:161 Lagerlöf RO (1974) Interpolation with rounded ramp functions. Commun ACM 17:476–479 Lashgari A, Jafarian Y, Haddad A (2021) Predictive model for seismic sliding displacement of slopes subjected to pulse-like motions. Bull Eng Geol Environ 80:6563–6582 Liu J, Zhang Y, Wei J, Xiang C, Wang Q, Xu P, Fu H (2021) Hazard assessment of earthquake-induced landslides by using permanent displacement model considering near-fault pulse-like ground motions. Bull Eng Geol Environ 80:8503–8518 Liu J, Fu H, Zhang Y, Xu P, Hao R, Yu H, He Y, Deng H, Zheng L (2023a) Effects of the probability of pulse-like ground motions on landslide susceptibility assessment in near-fault areas. J Mt Sci 20:31–48 Liu J, Zhang Y, Xu P, Zeng Y, Xiang C, Fu H, Yu H, He Y (2023b) Predictive displacement models considering the probability of pulse-like ground motions for earthquake-induced landslides hazard assessment. J Earthq Eng 0:1–25 Massey C, Townsend D, Rathje E, Allstadt KE, Lukovic B, Kaneko Y, Bradley B, Wartman J, Jibson RW, Petley DN, Horspool N, Hamling I, Carey J, Cox S, Davidson J, Dellow S, Godt JW, Holden C, Jones K, Kaiser A, Little M, Lyndsell B, McColl S, Morgenstern R, Rengers FK, Rhoades D, Rosser B, Strong D, Singeisen C, Villeneuve M (2018) Landslides triggered by the 14 November 2016 Mw 7.8 Kaikōura earthquake. New Zealand Bull Seismol Soc Am 108:1630–1648 Masuda N, Watanabe K, Miyabuchi Y (2004) Rhyolite to dacite lava flows newly-discovered on the western Slope of Aso central cones, Southwestern Japan. Bull Volcanol Soc Jpn 49:119–128 Meunier P, Hovius N, Haines AJ (2007) Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophys Res Lett 34(20) Moore JDP, Yu H, Tang C-H, Wang T, Barbot S, Peng D, Masuti S, Dauwels J, Hsu Y-J, Lambert V, Nanjundiah P, Wei S, Lindsey E, Feng L, Shibazaki B (2017) Imaging the distribution of transient viscosity after the 2016 Mw 7.1 Kumamoto earthquake. Science 356:163–167 Morikawa DS, Asai M (2022) A phase-change approach to landslide simulations: Coupling finite strain elastoplastic TLSPH with non-Newtonian IISPH. Comput Geotech 148:104815 Mukunoki T, Kasama K, Murakami S, Ikemi H, Ishikura R, Fujikawa T, Yasufuku N, Kitazono Y (2016) Reconnaissance report on geotechnical damage caused by an earthquake with JMA seismic intensity 7 twice in 28 h, Kumamoto, Japan. Soils Found 56:947–964 Newmark NM (1965) Effects of earthquakes on dams and embankments. Géotechnique 15:139–160 Nozu A, Nagasaka Y (2017) Rupture process of the main shock of the 2016 Kumamoto earthquake with special reference to damaging ground motions: waveform inversion with empirical Green’s functions. Earth Planets Space 69:22 Papathanassiou G, Valkaniotis S, Ganas A (2021) Spatial patterns, controlling factors, and characteristics of landslides triggered by strike-slip faulting earthquakes: case study of Lefkada island. Greece Bull Eng Geol Environ 80:3747–3765 Petukhin A, Kawase H, Nagashima F, Ito E (2023) Characterized source model of the M7.3 2016 Kumamoto earthquake by the 3D reciprocity GFs inversion with special reference to the velocity pulse at KMMH16. Earth Planets Space 75:16 Pitarka A, Irikura K, Iwata T, Sekiguchi H (1998) Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-Ken Nanbu (Kobe), Japan, earthquake. Bull Seismol Soc Am 88:428–440 Quaranta G, Angelucci G, Mollaioli F (2022) Near-fault earthquakes with pulse-like horizontal and vertical seismic ground motion components: Analysis and effects on elastomeric bearings. Soil Dyn Earthq Eng 160:107361 Salinas-Jasso JA, Montalvo-Arrieta JC, Velasco-Tapia F (2022) Spatial patterns of shallow landslides induced by the 19 September 2017 Puebla-Morelos earthquake. Mexico Bull Eng Geol Environ 82:15 Shahi SK, Baker JW (2014) An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions. Bull Seismol Soc Am 104:2456–2466 Shi G, Goodman RE (1989) Generalization of two-dimensional discontinuous deformation analysis for forward modelling. Int J Numer Anal Methods Geomech 13:359–380 Shinoda M, Miyata Y, Kurokawa U, Kondo K (2019) Regional landslide susceptibility following the 2016 Kumamoto earthquake using back-calculated geomaterial strength parameters. Landslides 16:1497–1516 Somerville PG (2003) Magnitude scaling of the near fault rupture directivity pulse. Phys Earth Planet Inter 137:201–212 Song K, Wang F, Dai Z, Iio A, Osaka O, Sakata S (2019) Geological characteristics of landslides triggered by the 2016 Kumamoto earthquake in Mt. Aso volcano, Japan. Bull Eng Geol Environ 78:167–176 Spudich P, Rowshandel B, Shahi SK, Baker JW, Chiou BS-J (2014) Comparison of NGA-West2 directivity models. Earthq Spectra 30:1199–1221 Takahashi Y (2016) Asahi Shimbun aerial photo. https://www.asahi.com/articles/ASJ4N3R27J4NULBJ00F.html. Accessed 20 Sep 2023 Tanaka M, Asano K, Iwata T, Kubo H (2014) Source rupture process of the 2011 Fukushima-ken Hamadori earthquake: how did the two subparallel faults rupture? Earth Planets Space 66:101 Tatard L, Grasso JR (2013) Controls of earthquake faulting style on near field landslide triggering: The role of coseismic slip. J Geophys Res Solid Earth 118:2953–2964 Uchide T, Horikawa H, Nakai M, Matsushita R, Shigematsu N, Ando R, Imanishi K (2016) The 2016 Kumamoto-Oita earthquake sequence: aftershock seismicity gap and dynamic triggering in volcanic areas. Earth Planets Space 68:180 von Specht S, Ozturk U, Veh G, Cotton F, Korup O (2019) Effects of finite source rupture on landslide triggering: the 2016 Mw 7.1 Kumamoto earthquake. Solid Earth 10:463–486 Wang X, Nie G, Wang D (2010) Relationships between ground motion parameters and landslides induced by Wenchuan earthquake. Earthq Sci 23:233–242 Wu J-H (2010) Seismic landslide simulations in discontinuous deformation analysis. Comput Geotech 37:594–601 Xiang C, Zhang Y, Huang D, Ueda K, Fu H, Liu J, Zhao L (2023) Predictive model for seismic displacements of flexible sliding block subjected to near-fault pulse-like ground motions. Eng Geol 320:107134 Xu C, Ma S, Tan Z, Xie C, Toda S, Huang X (2018) Landslides triggered by the 2016 Mj 7.3 Kumamoto, Japan, earthquake. Landslides 15:551–564 Yagi Y, Okuwaki R, Enescu B, Kasahara A, Miyakawa A, Otsubo M (2016) Rupture process of the 2016 Kumamoto earthquake in relation to the thermal structure around Aso volcano. Earth Planets Space 68:118 Zhai C, Chang Z, Li S, Chen Z, Xie L (2013) Quantitative identification of near-fault pulse-like ground motions based on energy. Bull Seismol Soc Am 103:2591–2603 Zhang L, Chen G, Wu Y, Jiang H (2016) Stochastic ground-motion simulations for the 2016 Kumamoto, Japan, earthquake. Earth Planets Space 68:184 Zhang J, Chen S, Wang T, Wu F (2022a) Study on correlation between ground motion parameters and soil slope seismic response. Bull Eng Geol Environ 81:226 Zhang Y, Liu J, Cheng Q, Xiao L, Zhao L, Xiang C, Buah PA, Yu H, He Y (2022b) A new permanent displacement model considering pulse-like ground motions and its application in landslide hazard assessment. Soil Dyn Earthq Eng 163:107556 Zhang Y, Wang J, Xu Q, Chen G, Zhao, John, Zheng L, Han Z, Yu P (2015) DDA validation of the mobility of earthquake-induced landslides. Eng Geol 194:38–51 Zhao T, Zhao B (2021) A modified algorithm to identify the strongest velocity pulse in three orthogonal components of ground motions. Soil Dyn Earthq Eng 146:106749