Ảnh hưởng của phương pháp chuẩn bị đối với nồng độ kim loại nặng trong mẫu rêu Pleurozium schreberi trước khi sử dụng trong các nghiên cứu giám sát sinh học chủ động

Springer Science and Business Media LLC - Tập 28 Số 8 - Trang 10068-10076 - 2021
Paweł Świsłowski1, Grzegorz Kosior1, Małgorzata Rajfur1
1Institute of Environmental Engineering and Biotechnology, University of Opole, B. Kominka 6a, 45-032, Opole, Poland

Tóm tắt

Tóm tắt

Giám sát sinh học chủ động được sử dụng để đánh giá ô nhiễm môi trường do các yếu tố như kim loại nặng thông qua các loài chỉ thị như rêu. Chúng được sử dụng, trong số các khu vực khác, ở các khu vực đô thị nơi không có các loài chỉ thị. Trong các khu vực nghiên cứu như vậy, rêu được thu thập từ các địa điểm được coi là sạch về sinh thái sẽ được đưa ra thử nghiệm. Trong bối cảnh này, việc chuẩn bị rêu đúng cách trước khi thử nghiệm là rất quan trọng, để thông tin nhận được về điều kiện môi trường là đáng tin cậy. Vào năm 2018, các nghiên cứu đã được thực hiện trong các khu vực rừng của miền Nam Ba Lan - tại tỉnh Opolskie. Rêu Pleurozium schreberi đã được sử dụng trong các nghiên cứu này. Phương pháp quang phổ hấp thụ nguyên tử với đầu đốt ngọn lửa (F-AAS) đã được sử dụng để xác định nồng độ của Mn, Fe, Ni, Cu, Zn và Pb có mặt. Mục tiêu là nghiên cứu ảnh hưởng của phương pháp chuẩn bị đến các mẫu rêu Pleurozium schreberi trước khi sử dụng trong các nghiên cứu giám sát sinh học chủ động. Bốn phương pháp khác nhau đã được thử nghiệm trên bốn địa điểm mẫu khác nhau (với mức độ ô nhiễm khác nhau). Kết quả của nghiên cứu đã được phân tích và hệ số biến thiên (CV) đã được xác định. Giá trị của CV bị ảnh hưởng, trong số những điều khác, bởi vị trí của từng mẫu cụ thể và mức độ ô nhiễm bởi, chẳng hạn như kim loại nặng, trong rêu. Nghiên cứu đã chứng minh rằng trong số bốn phương pháp được sử dụng để chuẩn bị rêu cho việc thử nghiệm sau này trong giám sát sinh học chủ động, phương pháp tốt nhất là trung bình với việc đồng thời điều kiện hóa rêu trong nước khử khoáng. Việc điều trị này làm cho hệ số CV giảm xuống dưới 10% cho hầu hết các kim loại được xác định trong các mẫu rêu. Nó cũng đã được chỉ ra rằng việc duy trì phương pháp thu thập rêu theo tiêu chuẩn ICP Vegetation (khu vực hở/rừng - tán cây) cũng có ảnh hưởng đáng kể đến kết quả thu được. Phân tích thống kê đã xác nhận (kiểm tra Wilcoxon) rằng phương pháp xử lý rêu đã ảnh hưởng đáng kể đến các kết quả thu được. Nhờ vào việc chuẩn bị thích hợp các mẫu rêu trước khi thử nghiệm, chúng có thể được sử dụng trong việc giám sát sinh học chủ động các khu vực đô thị, chẳng hạn như.

Từ khóa


Tài liệu tham khảo

Aboal JR, Fernández JA, Couto JA, Carballeira A (2008) Testing differences in methods of preparing moss samples. Environ Monit Assess 137:371–378. https://doi.org/10.1007/s10661-007-9772-5

Aboal JR, Boquete MT, Carballeira A, et al (2017) Quantification of the overall measurement uncertainty associated with the passive moss biomonitoring technique: sample collection and processing. Environ Pollut. https://doi.org/10.1016/j.envpol.2017.01.084

Aničić M, Tasić M, Frontasyeva MV, Tomašević M, Rajšić S, Mijić Z, Popović A (2009) Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ Pollut 157:673–679. https://doi.org/10.1016/j.envpol.2008.08.003

Ares A, Aboal JR, Carballeira A, Giordano S, Adamo P, Fernández JA (2012) Moss bag biomonitoring: a methodological review. Sci Total Environ 432:143–158. https://doi.org/10.1016/j.scitotenv.2012.05.087

Ares A, Fernández JA, Carballeira A, Aboal JR (2014) Towards the methodological optimization of the moss bag technique in terms of contaminants concentrations and replicability values. Atmos Environ 94:496–507. https://doi.org/10.1016/j.atmosenv.2014.05.066

Ares A, Aboal J, Carballeira A, Fernández JA (2015) Do moss bags containing devitalized Sphagnum denticulatum reflect heavy metal concentrations in bulk deposition? Ecol Indic 50:90–98. https://doi.org/10.1016/j.ecolind.2014.10.030

Arndt J, Planer-Friedrich B (2018) Moss bag monitoring as screening technique to estimate the relevance of methylated arsine emission. Sci Total Environ 610-611:1590–1594. https://doi.org/10.1016/j.scitotenv.2017.06.123

Boquete MT, Aboal JR, Carballeira A, Fernández JA (2014) Effect of age on the heavy metal concentration in segments of Pseudoscleropodium purum and the biomonitoring of atmospheric deposition of metals. Atmos Environ 86:28–34. https://doi.org/10.1016/j.atmosenv.2013.12.039

Boquete MT, Aboal JR, Carballeira A, Fernández JA (2017) Do mosses exist outside of Europe? A biomonitoring reflection. Sci Total Environ 593–594:567–570. https://doi.org/10.1016/j.scitotenv.2017.03.196

Calabrese S, D’Alessandro W, Bellomo S, Brusca L, Martin RS, Saiano F, Parello F (2015) Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1 - major and trace element composition. Chemosphere. 119:1447–1455. https://doi.org/10.1016/j.chemosphere.2014.08.086

Capozzi F, Giordano S, Aboal JR, Adamo P, Bargagli R, Boquete T, di Palma A, Real C, Reski R, Spagnuolo V, Steinbauer K, Tretiach M, Varela Z, Zechmeister H, Fernández JA (2016) Best options for the exposure of traditional and innovative moss bags: a systematic evaluation in three European countries. Environ Pollut 214:362–373. https://doi.org/10.1016/j.envpol.2016.04.043

de Oliveira RC, do Queiroz SCN, da Luz CFP et al (2016) Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere. 163:525–534. https://doi.org/10.1016/j.chemosphere.2016.08.022

Debén S, Fernández JA, Carballeira A, Kosior G, Aboal JR (2018) Improving active biomonitoring in aquatic environments: the optimal number and position of moss bags. Ecol Indic 93:753–758. https://doi.org/10.1016/j.ecolind.2018.05.058

Di Palma A, Capozzi F, Spagnuolo V et al (2017) Atmospheric particulate matter intercepted by moss-bags: relations to moss trace element uptake and land use. Chemosphere. 176:361–368. https://doi.org/10.1016/j.chemosphere.2017.02.120

Dmuchowski W, Gozdowski D, Baczewska AH (2011) Comparison of four bioindication methods for assessing the degree of environmental lead and cadmium pollution. J Hazard Mater 197:109–118. https://doi.org/10.1016/j.jhazmat.2011.09.062

Dołęgowska S (2016) Estimation of plant sampling uncertainty: an example based on chemical analysis of moss samples. Environ Sci Pollut Res 23:22623–22632. https://doi.org/10.1007/s11356-016-7477-4

Fernández JA, Aboal JR, Carballeira A (2000) Use of native and transplanted mosses as complementary techniques for biomonitoring mercury around an industrial facility. Sci Total Environ 256:151–161. https://doi.org/10.1016/S0048-9697(00)00478-2

Fernández JA, Aboal JR, Carballeira A (2010) Testing differences in methods of preparing moss samples. Effect of washing on Pseudoscleropodium purum. Environ Monit Assess 163:669–684. https://doi.org/10.1007/s10661-009-0867-z

Fernández JA, Boquete MT, Carballeira A, Aboal JR (2015) A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation. Sci Total Environ 517:132–150. https://doi.org/10.1016/j.scitotenv.2015.02.050

Giordano S, Adamo P, Spagnuolo V, Tretiach M, Bargagli R (2013) Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique. Chemosphere. 90:292–299. https://doi.org/10.1016/j.chemosphere.2012.07.006

ICP Vegetation (2020) Heavy metals, nitrogen and POPs in European mosses: 2020 survey

Iodice P, Adamo P, Capozzi F, di Palma A, Senatore A, Spagnuolo V, Giordano S (2016) Air pollution monitoring using emission inventories combined with the moss bag approach. Sci Total Environ 541:1410–1419. https://doi.org/10.1016/j.scitotenv.2015.10.034

Jiang Y, Fan M, Hu R, Zhao J, Wu Y (2018) Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas. Int J Environ Res Public Health 15. https://doi.org/10.3390/ijerph15061105

Konieczka P, Namieśnik J (2018) Quality assurance and quality control in the analytical chemical laboratory

Korzeniowska J, Panek E (2012) The content of trace metals (cd, Cr, cu, Ni, Pb, Zn) in selected plant species (moss Pleurozium schreberi, dandelion Taraxacum officianale, spruce Picea abies) along the road Cracow – Zakopane: Zawartść metali śladowych (cd, Cr, cu, Ni, Pb, Zn) w wybranyc. Geomatics Environ Eng 6:43. https://doi.org/10.7494/geom.2012.6.1.43

Kosior G, Samecka-Cymerman A, Kolon K, Kempers AJ (2010) Bioindication capacity of metal pollution of native and transplanted Pleurozium schreberi under various levels of pollution. Chemosphere. 81:321–326. https://doi.org/10.1016/j.chemosphere.2010.07.029

Kosior G, Přibylová P, Vaňková L, Kukučka P, Audy O, Klánová J, Samecka-Cymerman A, Mróz L, Kempers AJ (2017) Bioindication of PBDEs and PCBs by native and transplanted moss Pleurozium schreberi. Ecotoxicol Environ Saf 143:136–142. https://doi.org/10.1016/j.ecoenv.2017.05.025

Krawczyk J, Klink A, Wisłocka M (2009) Influence of tree canopies on concentration of some metals in throughfall, soil and moss Pleurozium schreberi (bird.) mitt. Fresenius Environ Bull

Krmar M, Wattanavatee K, Radnović D, Slivka J, Bhongsuwan T, Frontasyeva MV, Pavlov SS (2013) Airborne radionuclides in mosses collected at different latitudes. J Environ Radioact 117:45–48. https://doi.org/10.1016/j.jenvrad.2011.08.009

Lequy E, Dubos N, Witté I, Pascaud A, Sauvage S, Leblond S (2017) Assessing temporal trends of trace metal concentrations in mosses over France between 1996 and 2011: a flexible and robust method to account for heterogeneous sampling strategies. Environ Pollut 220:828–836. https://doi.org/10.1016/j.envpol.2016.10.065

Mahapatra B, Dhal NK, Dash AK, Panda BP, Panigrahi KCS, Pradhan A (2019) Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism. Environ Sci Pollut Res 26:29620–29638. https://doi.org/10.1007/s11356-019-06270-z

Nickel S, Schröder W (2017) Reorganisation of a long-term monitoring network using moss as biomonitor for atmospheric deposition in Germany. Ecol Indic 76:194–206. https://doi.org/10.1016/j.ecolind.2017.01.005

Oishi Y (2018) Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in Central Japan. Environ Pollut 234:330–338. https://doi.org/10.1016/j.envpol.2017.11.035

Olszowski T, Tomaszewska B, Góralna-Włodarczyk K (2012) Air quality in non-industrialised area in the typical polish countryside based on measurements of selected pollutants in immission and deposition phase. Atmos Environ 50:139–147. https://doi.org/10.1016/j.atmosenv.2011.12.049

Rajfur M, Świsłowski P, Nowainski F, Śmiechowicz B (2018) Mosses as biomonitor of air pollution with analytes originating from tobacco smoke. Chemistry-Didactics-Ecology-Metrology 23:127–136. https://doi.org/10.1515/cdem-2018-0008

Salo H, Mäkinen J (2014) Magnetic biomonitoring by moss bags for industry-derived air pollution in SW Finland. Atmos Environ 97:19–27. https://doi.org/10.1016/j.atmosenv.2014.08.003

Salo H, Berisha AK, Mäkinen J (2016) Seasonal comparison of moss bag technique against vertical snow samples for monitoring atmospheric pollution. J Environ Sci (China) 41:128–137. https://doi.org/10.1016/j.jes.2015.04.021

Singh S, Srivastava K, Gahtori D, Saxena DK (2017) Bryomonitoring of atmospheric elements in Rhodobryum giganteum (Schwaegr.) par., growing in Uttarakhand region of Indian Himalayas. Aerosol Air Qual Res. doi: https://doi.org/10.4209/aaqr.2015.06.0429

StatSoft Inc (2017) Statistica (data analysis software system), version 13

Suoranta T, Niemelä M, Poikolainen J, Piispanen J, Bokhari SNH, Meisel T, Perämäki P (2016) Active biomonitoring of palladium, platinum, and rhodium emissions from road traffic using transplanted moss. Environ Sci Pollut Res 23:16790–16801. https://doi.org/10.1007/s11356-016-6880-1

Thermo Fisher Scientific Inc (2011) iCE 3000 series AA spectrometers operator’s manual. 44:1–1 to 7–18

Varela Z, García-Seoane R, Arróniz-Crespo M, Carballeira A, Fernández JA, Aboal JR (2016) Evaluation of the use of moss transplants (Pseudoscleropodium purum) for biomonitoring different forms of air pollutant nitrogen compounds. Environ Pollut 213:841–849. https://doi.org/10.1016/j.envpol.2016.03.056

Viskari EL, Rekilä R, Roy S, Lehto O, Ruuskanen J, Kärenlampi L (1997) Airborne pollutants along a roadside: assessment using snow analyses and moss bags. Environ Pollut 97:153–160. https://doi.org/10.1016/S0269-7491(97)00061-4

Vuković G, Urošević MA, Pergal M, Janković M, Goryainova Z, Tomašević M, Popović A (2015a) Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study. Environ Sci Pollut Res 22:18956–18966. https://doi.org/10.1007/s11356-015-5096-0

Vuković G, Urošević MA, Tomašević M, Samson R, Popović A (2015b) Biomagnetic monitoring of urban air pollution using moss bags (Sphagnum girgensohnii). Ecol Indic 52:40–47. https://doi.org/10.1016/j.ecolind.2014.11.018

Zar J (2010) Biostatistical analysis. 5th. N.J.: Prentice-Hall/Pearson, Upper Saddle River

Zhou X, Chen Q, Liu C, Fang Y (2017) Using moss to assess airborne heavy metal pollution in Taizhou, China. Int J Environ Res Public Health https://doi.org/10.3390/ijerph14040430