The influence of polymeric membrane surface free energy on cell metabolic functions

Springer Science and Business Media LLC - Tập 12 - Trang 959-963 - 2001
L. De Bartolo1, S. Morelli1, A. Bader2,3, E. Drioli1
1Research Institute on Membranes and Modelling of Chemical Reactors, IRMERC-CNR, University of Calabria, Rende (CS), Italy
2Leibniz Institute for Biotechnology and Artificial Organs (LEBAO), Medizinische Hochschule Hannover, Hannover, Germany
3Gesellschaft für Biotechnologische Forschung Braunschweig (GBF), Organ und Gewebekulturen, Braunschweig, Germany

Tóm tắt

In membrane bioartificial organs using isolated cells, polymeric semipermeable membranes are used as immunoselective barriers, means for cell oxygenation and also as substrata for adhesion of anchorage-dependent cells. The selection of cytocompatible membranes that promote in vitro cell adhesion and function could be dependent on its membrane properties. In this study we investigated the physicochemical aspects of the interaction between the membrane and mammalian cells in order to provide guidelines to the selection of cytocompatible membranes. We evaluated the metabolic behavior of isolated liver cells cultured on various polymeric membranes such as the ones modified by protein adsorption. The physico-chemical properties of the membranes were characterized by contact angle measurements. The surface free energy of membranes and their different parameters acid (γ+), base (γ-) and Lifshitz-van der Waals (γ LW ) were calculated according to Good-van Oss's model. The adsorption of protein modified markedly both contact angle and membrane surface tension. In particular, membrane surface free energy decreased drastically with increased water contact angle. For each investigated membrane we observed that liver specific functions of cells improve on hydrophilic membrane surfaces. For all investigated membranes the rate of ammonia elimination increased with increasing of membrane surface free energy. © 2001 Kluwer Academic Publishers

Tài liệu tham khảo

L. De Bartolo and E. Drioli, in “New Biomedical Materials — Basic and Applied Studies” edited by P. I. Haris and D. Chapman (IOS Press, Amsterdam, 1998) p. 167. A. Bader, N. Fruhauf, M. Tiedge, M. Drinkgen, L. De Bartolo, J. T. Borlak, G. Steinhoff and A. Haverich, Exp. Cell Res. 246(1) (1999) 221. L. De Bartolo, G. Jarosch-Von Schweder, A. Haverich and A. Bader, Biotech. Progress 16 (2000) 102. R. Singhvi, G. Stephanopoulos and D. I. C. Wang, Biotechnol. Bioeng. 43 (1994) 764. M. J. Lydon, T. W. Minett and B. J. Tighe, Biomaterials 6 (1985) 396. L. De Bartolo, G. Catapano, C. Della Volpe and E. Drioli, J. Biomat. Sci. — Polymer Edn. 10(7) (1999) 641. G. Catapano, M. C. Di Lorenzo, C. Della Volpe, L. De Bartolo and C. Miglaresi, J. Biomater. Sci. — Polymer Edn. 7 (1996) 1017. A. Bader, L. De Bartolo and A. Haverich, J. Biotechnology 81(2–3) (2000) 95. R. J. Good, J. Adhesion Sci. Technol. 12 (1992) 1269. G. Catapano, L. De Bartolo, C. P. Lombardi and E. Drioli, Int. J. Artif. Organs 19(1) (1996) 61. M. N. Berry, A. M. Edwards and G. J. Barritt, in “Laboratory Techniques in Biochemistry and Molecular Biology” edited by R. H. Burdon and P. H. van Knippenberg (Elsevier, Amsterdam, 1991). A. Bismarck, M. E. Kumru and J. Springer, J. Colloid Interf. Sci. 217 (1999) 377. D. R. Absolom, W. Zingg and A. Neumann, J. Biomed. Mater. Res. 21 (1987) 161. J. H. Lee, G. Khang, J. W. Lee and H. B. Lee, J. Colloid Interf. Sci. 205 (1998) 323. G. Altankov, F. Grinnell and T. Groth, J. Biomed. Mater. Res. 30 (1996) 385.