The influence of migratory Paraburkholderia on growth and competition of wood-decay fungi

Fungal Ecology - Tập 45 - Trang 100937 - 2020
Sarah R. Christofides1, Aimee Bettridge1, Daniel Farewell2, Andrew J. Weightman1, Lynne Boddy1
1Cardiff School of Biosciences, Cardiff University, CF10 3AX, Wales, UK
2Cardiff School of Medicine, Cardiff University, CF14 4YS, Wales, UK

Tài liệu tham khảo

Allaire, 2016 Boddy, 2000, Interspecific combative interactions between wood-decaying basidiomycetes, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol., 31, 185, 10.1111/j.1574-6941.2000.tb00683.x Boddy, 1993, Saprotrophic cord-forming fungi: warfare strategies and other ecological aspects, Mycol. Res., 97, 641, 10.1016/S0953-7562(09)80141-X Boddy, 2016, Fungal ecology: principles and mechanisms of colonization and competition by saprotrophic fungi, Microbiol. Spectr., 4, 10.1128/microbiolspec.FUNK-0019-2016 Caporaso, 2010, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7, 335, 10.1038/nmeth.f.303 Christofides, 2019, Fungal control of early-stage bacterial community development in decomposing wood, Fungal Ecol., 42, 10.1016/j.funeco.2019.100868 Coenye, 2001, Burkholderia caledonica sp . nov ., two new species isolated from the environment , animals and human clinical samples, Int. J. Syst. Evol. Microbiol., 51, 1099, 10.1099/00207713-51-3-1099 Connolly, 2011, Calcium translocation, calcium oxalate accumulation, and hyphal sheath morphology in the white-rot fungus Resinicium bicolor, Can. J. Bot., 73, 927, 10.1139/b95-101 Crowther, 2011, Outcomes of fungal interactions are determined by soil invertebrate grazers, Ecol. Lett., 14, 1134, 10.1111/j.1461-0248.2011.01682.x Depoorter, 2016, Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers, Appl. Microbiol. Biotechnol., 100, 5215, 10.1007/s00253-016-7520-x DeSantis, 2006, Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB, Appl. Environ. Microbiol., 72, 5069, 10.1128/AEM.03006-05 Folman, 2008, Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol., 63, 181, 10.1111/j.1574-6941.2007.00425.x Haq, 2016, Chemotaxis and adherence to fungal surfaces are key components of the behavioral response of Burkholderia terrae BS001 to two selected soil fungi, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol., 92, fiw16 Haq, 2014, The genome of the fungal-interactive soil bacterium Burkholderia terrae BS001-A plethora of outstanding interactive capabilities unveiled, Genome Biol. Evol., 6, 1652, 10.1093/gbe/evu126 Haq, 2017, Transcriptional responses of the bacterium Burkholderia terrae BS001 to the fungal host Lyophyllum sp. strain karsten under soil-mimicking conditions, Microb. Ecol., 73, 236, 10.1007/s00248-016-0885-7 Hiscox, 2016, Location, location, location: priority effects in wood decay communities may vary between sites, Environ. Microbiol., 18, 1954, 10.1111/1462-2920.13141 Hiscox, 2017, Threesomes destabilise certain relationships: multispecies interactions between wood decay fungi in natural resources, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol., 93, fix014 Hover, 2016, Analysis of mechanisms of bacterial (Serratia marcescens) attachment, migration and killing of fungal hyphae, Appl. Environ. Microbiol., 82, 10.1128/AEM.04070-15 Ihrmark, 2012, New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol., 82, 666, 10.1111/j.1574-6941.2012.01437.x Johnston, 2016, Bacteria in decomposing wood and their interactions with wood-decay fungi, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol., 92 Johnston, 2019, Highly competitive fungi manipulate bacterial communities in decomposing beech wood (Fagus sylvatica), FEMS Microbiol. Ecol., 95, 10.1093/femsec/fiy225 Kõljalg, 2013, Towards a unified paradigm for sequence-based identification of fungi, Mol. Ecol., 22, 5271, 10.1111/mec.12481 Leben, 1984, Spread of plant pathogenic bacteria with fungal hyphae, Am. Phytopathol. Soc., 74, 176, 10.1094/Phyto-74-983 Lenth, 2016, Least-squares means: the R package lsmeans, J. Stat. Software, 69, 1 Nazir, 2010, Lyophyllum sp. strain Karsten alleviates pH pressure in acid soil and enhances the survival of Variovorax paradoxus HB44 and other bacteria in the mycosphere, Soil Biol. Biochem., 42, 2146, 10.1016/j.soilbio.2010.08.019 Nazir, 2012, The capacity to comigrate with Lyophyllum sp. strain Karsten through different soils is spread among several phylogenetic groups within the genus Burkholderia, Soil Biol. Biochem., 50, 221, 10.1016/j.soilbio.2012.03.015 Nazir, 2017, The ecological role of type three secretion systems in the interaction of bacteria with fungi in soil and related habitats is diverse and context-dependent, Front. Microbiol., 8, 38, 10.3389/fmicb.2017.00038 Nazir, 2014, Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents, Front. Microbiol., 5, 1, 10.3389/fmicb.2014.00598 Oren, 2015, List of new names and new combinations previously effectively, but not validly, published, Int. J. Syst. Evol. Microbiol., 65, 2017, 10.1099/ijs.0.000317 Pinheiro, 2016 R Development Core Team, 2011 RStudio Team, 2016 Sarkar, 2008 Sawana, 2014, Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring env, Front. Genet., 5, 429, 10.3389/fgene.2014.00429 Schulz-Bohm, 2017, Fungus-associated bacteriome in charge of their host behavior, Fungal Genet. Biol., 102, 38, 10.1016/j.fgb.2016.07.011 Seigle-Murandi, 1996, Bacteria are omnipresent on Phanerochaete chrysosporium burdsall, Appl. Environ. Microbiol., 62, 2477, 10.1128/AEM.62.7.2477-2481.1996 Simon, 2017, An in situ inventory of fungi and their associated migrating bacteria in forest soils using fungal highway columns, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol., 93, fiw217, 10.1093/femsec/fiw217 Stopnisek, 2015, Molecular mechanisms underlying the close association between soil Burkholderia and fungi, ISME J., 10, 253, 10.1038/ismej.2015.73 Warmink, 2011, Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae, Soil Biol. Biochem., 43, 760, 10.1016/j.soilbio.2010.12.009 Warmink, 2009, Migratory response of soil bacteria to Lyophyllum sp. strain Karsten in soil microcosms, Appl. Environ. Microbiol., 75, 2820, 10.1128/AEM.02110-08 Webster, 2019, The genome sequences of three paraburkholderia sp. strains isolated from wood-decay fungi reveal them as novel species with antimicrobial biosynthetic potential, Microbiol. Resour. Announc., 8, 10.1128/MRA.00778-19 Weisburg, 1991, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 173, 697, 10.1128/JB.173.2.697-703.1991 Wichmann, 2008, A novel gene, phcA from Pseudomonas syringae induces programmed cell death in the filamentous fungus Neurospora crassa, Mol. Microbiol., 68, 672, 10.1111/j.1365-2958.2008.06175.x Wickham, 2009 Wickham, 2016 Yang, 2016, The type three secretion system facilitates migration of Burkholderia terrae BS001 in the mycosphere of two soil-borne fungi, Biol. Fertil. Soils, 52, 1037, 10.1007/s00374-016-1140-6 Wilson, 1990, Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction, J. Clin. Microbiol., 28, 1942, 10.1128/JCM.28.9.1942-1946.1990 Yang, 2018, Migration of paraburkholderia terrae BS001 along old fungal hyphae in soil at various pH levels, Microb. Ecol., 76, 443, 10.1007/s00248-017-1137-1 Yang, 2017, Role of flagella and type four pili in the co-migration of Burkholderia terrae BS001 with fungal hyphae through soil, Sci. Rep., 7, 2997, 10.1038/s41598-017-02959-8 Zhang, 2018, Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes, Nat. Commun., 9 Zuur, 2009