The influence of humic substances on lacustrine planktonic food chains

Hydrobiologia - Tập 229 Số 1 - Trang 73-91 - 1992
Roger I. Jones1
1Division of Biological Sciences, Institute of Environmental and Biological Sciences, University of Lancaster, LAI 4YQ, Lancaster, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aiken, G. R., D. M. McKnight, R. L. Wershaw & P. MacCarthy (eds), 1985. Humic substances in soil, sediment and water. J. Wiley & Sons, N.Y., 692 pp.

Amador, J. A., M. Alexander & R. G. Zika, 1989. Sequential photochemical and microbial degradation of organic molecules bound to humic acid. Appl. envir. Microbiol. 55: 2843–2849.

Anderson, M. A. & F. M. M. Morel, 1982. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol. Oceanogr. 27: 789–813.

Arvola, L., 1984. Vertical distribution of primary production and phytoplankton in two small lakes with different humus concentration in southern Finland. Holarct. Ecol. 7: 390–398.

Arvola, L. & P. Kankaala, 1989. Winter and spring variability in phyto- and bacterioplankton in lakes with different water colour. Aqua fenn. 19: 29–39.

Arvola, L., K. Salonen & M. Rask, 1990. Chemical budgets for a small dystrophic lake in southern Finland. Limnologica (Berlin) In Press.

Auclair, J. C., P. Brassard & P. Couture, 1985. Effects of two molecular weight fractions on phosphorus cycling in natural phytoplankton communities. Wat. Res. 19: 1447–1453.

Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L.-A. MeyerReil & F. Thingstad, 1983. The ecological role of watercolumn microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

Bell, R. T. & J. Kuparinen, 1984. Assessing phytoplankton and bacterioplankton production during early spring in Lake Erken, Sweden. Appl. envir. Microbiol. 45: 1709–1721.

Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284.

Bird, D. F. & J. Kalff, 1989. Phagotrophic sustenance of a metalimnetic phytoplankton peak. Limnol. Oceanogr. 34: 155–162.

Birge, E. A. & C. Juday, 1927. The organic content of the water of small lakes. Proc. Amer. Phil. Soc. 66: 357–372.

Boraas, M. E., K. W. Estep, P. W. Johnson & J. McN. Sieburth, 1988. Phagotrophic phototrophs: The ecological significance of mixotrophy. J. Protozool. 35: 249–252.

Bowling, L. C., 1990. Heat contents, thermal stabilities and Birgean wind work in dystrophic Tasmanian lakes and reservoirs. Aust. J. Mar. Freshwat. Res. 41: 429–441.

Bowling, L. C. & K. Salonen, 1990. Heat uptake and resistance to mixing in small humic forest lakes in southern Finland. Aust. J. Mar. Freshwat. Res. 41: 747–759.

Brassard, P. & J. C. Auclair, 1984. Orthophosphate uptake rate constants are mediated by the 103–104 molecular weight fraction in Shield lakewater. Can. J. Fish. aquat. Sci. 41: 166–173.

Bratbak, G. & T. F. Thingstad, 1985. Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar. Ecol. Prog. Ser. 25: 23–30.

Button, D. K., 1985. Kinetics of nutrient-limited transport and microbial growth. Microb. Rev. 49: 270–297.

Caron, D. A., J. C. Goldman & M. R. Dennett, 1988. Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiologia 159: 27–40.

Chrost, R. J., U. Münster, H. Rai, D. Albrecht, P. K. Witzel & J. Overbeck, 1989. Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake. J. Plankton Res. 11: 223–242.

Cole, J. J., G. E. Likens & D. L. Strayer, 1982. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol. Oceanogr. 27: 1080–1090.

Cole, J. J., W. H. McDowell & G. E. Likens, 1984. Sources and molecular weight of ‘dissolved’ organic carbon in an oligotrophic lake. Oikos 42: 1–9.

Cotner, J. B. & R. T. Heath, 1990. Iron redox effects on photosensitive phosphorus release from dissolved humic materials. Limnol. Oceanogr. 35: 1175–1181.

Coveney, M. F., 1982. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton. Oikos, 38: 8–20.

Croome, R. L. & P. A. Tyler, 1988. Phytoflagellates and their ecology in Tasmanian polyhumic lakes. Hydrobiologia 161: 245–253.

Currie, D. J. & J. Kalff, 1984. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limmnol. Oceanogr. 29: 298–310.

De Haan, H., 1974. Effect of a fulvic acid fraction on the growth of a Pseudomonas from Tjeukemeer (The Netherlands). Freshwat. Biol. 4: 301–309.

De Haan, H., 1977. Effect of benzoate on microbial decomposition of fulvic acid in Tjeukemeer (The Netherlands). Limnol. Oceanogr. 22: 38–44.

De Haan, H., 1992. Impacts of environmental changes on the biogeochemistry of aquatic humic substances. Hydrobiologia 229: 59–71.

De Haan, H. & T. De Boer, 1979. Seasonal variations of fulvic acids, amino acids, and sugars in Tjeukemeer, The Netherlands. Arch. Hydrobiol. 85: 30–40.

De Haan, H. & T. De Boer, 1986. Geochemical aspects of aqueoua iron, phosphorus and dissolved organic carbon in the humic Lake Tjeukemeer, The Netherlands. Freshwat. Biol. 16: 661–672.

De Haan, H., R. I. Jones & K. Salonen, 1987. Does ionic strength affect the configuration of aquatic humic substances, as indicated by gel filtration? Freshwat. Biol. 17: 453–459.

De Haan, H., R. I. Jones & K. Salonen, 1990. Abiotic transformations of iron and phosphate in humic lake water, revealed by double isotope labelling and gel filtration. Limnol. Oceanogr. 35: 35: 491–497.

Eloranta, P., 1978. Light penetration in different types of lakes in Central Finland. Holarct. Ecol. 1: 362–366.

Estep, K. W., P. G. Davis, M. D. Keller & J. McN. Sieburth, 1986. How important are oceanic algal nanoflagellates in bacterivory? Limnol. Oceanogr. 31: 646–650.

Forsyth, D. J. & M. R. James, 1984. Zooplankton grazing on lake bacterioplankton and phytoplankton. J. Plankton Res. 6: 803–810.

Francko, D. A., 1986. Epilimnetic phosphorus cycling: Influence of humic materials and iron coexisting major mechanisms. Can. J. Fish. aquat. Sci. 43: 302–310.

Francko, D. A. & R. T. Heath, 1979. Functionally distinct classes of complex phosphorus compounds in lake water. Limnol. Oceanogr. 24: 463–473.

Francko, D. A. & R. T. Heath, 1982. UV-sensitive complex phosphorus: association with dissolved humic material and iron in a bog lake. Limnol. Oceanogr. 27: 564–569.

Geller, A., 1985a. Light-induced conversion of refractory, high molecular weight lake water constituents. Schweiz. Z. Hydrol. 47: 21–26.

Geller, A., 1985b. Degradation and formation of refractory DOM by bacteria during simultaneous growth on labile substrates and persistent lake water constituents. Schweiz. Z. Hydrol. 47: 27–44.

Geller, W. & H. Müller, 1981. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316–321.

Guildford, S. J., F. P. Healey & R. E. Hecky, 1987. Depression of primary production by humic matter and suspended sediment in limnocorral experiments at Southern Indian Lake, Northern Manitoba. Can. J. Fish. aquat. Sci. 45: 1408–1417.

Glide, H., 1985. Influence of phagotrophic processes on the regeneration of nutrients in two-stage continuous culture systems. Microb. Ecol. 11: 193–204.

Hakala, I., 1974. Sedimentaatio Pääjarvessä. Luonnon Tutkija 78: 108–110.

Havens, K. E. III., 1989. Seasonal succession in the plankton of a naturally acidic, highly humic lake in Northeastern Ohio, USA. J. Plankton Res. 11: 1321–1327.

Hessen, D. O., 1985a. The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microbiol. Ecol. 31: 215–223.

Hessen, D. O., 1985b. Filtering structures and particle size selection in coexisting cladocerans. Oecologia 66: 368–372.

Hessen, D. O. & A. K. Schartau, 1988. Seasonal and spatial overlap between cladocerans in humic lakes. Int. Revue ges. Hydrobiol. 73: 379–405.

Hessen, D. O., T. Andersen & A. Lyche, 1989. Differential grazing and resource utilization of zooplankton in a humic lake. Arch. Hydrobiol. 114: 321–347.

Hessen, D. O., T. Andersen & A. Lyche, 1990. Carbon metabolism in a humic lake: pool sizes and cycling through zooplankton. Limnol. Oceanogr. 35: 84–99.

Ilmavirta, V., 1984. The ecology of flagellated phytoplankton in brown-water lakes. Verb. int. Ver. Limnol. 22: 817–821.

Ilmavirta, V., 1988. Phytoflagellates and their ecology in Finnish brown-water lakes. Hydrobiologia 161: 255–270.

Jackson, T. A. & R. E. Hecky, 1980. Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Can. J. Fish. aquat. Sci. 37: 2300–2317.

Järnefelt, H., 1958. On the typology of the northern lakes. Verb. int. Ver. Limnol. 13: 228–235.

Jones, A. K. & R. C. Cannon, 1986. The release of microalgal photosynthate and associated bacterial uptake and heterotrophic growth. Br. phycol. J. 21: 341–358.

Jones, R. I., 1977a. Factors controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh). II. Phytoplankton production and its chief determinants. J. Ecol. 65: 561–577.

Jones, R. I., 1977a. Factors controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh). III. Interspecific competition in relation to irradiance and temperature. J. Ecol. 65: 579–586.

Jones, R. I., 1990. Phosphorus transformations in the epilimnion of humic lakes: biological uptake of phosphate. Freshwat. Biol. 23: 323–337.

Jones, R. I. & L. Arvola, 1984. Light penetration and some related characteristics in small forest lakes in southern Finland. Verh. int. Ver. Limnol. 22: 811–816.

Jones, R. I. & K. Salonen, 1985. The importance of bacterial utilization of released phytoplankton photosynthate in two humic forest lakes in southern Finland. Holarct. Ecol. 8: 133–140.

Jones, R. I., K. Salonen & H. De Haan, 1988. Phosphorus transformations in the epilimnion of humic lakes: abiotic interactions between dissolved humic materials and phosphate. Freshwat. Biol. 19: 357–369.

Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwat. Biol. 19: 285–296.

Kieber, D. J., J. McDaniel & K. Mopper, 1989. Photochemical source of biological substrates in seawater: implications for carbon cycling. Nature 341: 637–639.

Kirk, J. T. O., 1983. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, 401 pp.

Latja, R., 1974. Pääjärven eläinplankton. Luonnon Tutkija 78: 153–156.

Makarewicz, J. C., G. E. Likens & M. J. Jordan, 1985. Interactions between bacteria and phytoplankton. In G. E. Likens (ed.), An Ecosystem Approach to Aquatic Ecology. Springer-Verlag, New York: 323–324.

Miles, C. J. & P. L. Brezonik, 1981. Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycle. Envir. Sci. Technol. 15: 1089–1095.

Pedros-Alio, C. & T. D. Brock, 1983. The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake. Freshwat. Biol. 13: 227–239.

Peterson, B. J., J. E. Hobbie & J. F. Haney, 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23: 1039–1045.

Pomeroy, L. R., 1974. The ocean's food web, a changing paradigm. BioScience 24: 499–504.

Pomeroy, L. R. & W. J. Wiebe, 1988. Energetics of microbial food webs. Hydrobiologia 159: 7–18.

Prakash, A., M. A. Rashid, A. Jensen & D. V. Subba Rao, 1973. Influence of humic substances on the growth of marine phytoplankton: diatoms. Limnol. Oceanogr. 18: 516–524.

Pratt, J. R. & J. D. Chappell, 1989. Abundance and feeding of microheterotrophic flagellates from a eutrophic lake. Hydrobiologia 182: 165–169.

Provasoli, L., 1963. Organic regulation of phytoplankton fertility. In The Sea, Vol. 2. Wiley-Interscience, New York: 165–219.

Ramberg, L., 1979. Relations between phytoplankton and light climate in two Swedish forest lakes. Int. Revue ges. Hydrobiol. 64: 749–782.

Rask, M., A. Heinänen, K. Salonen, L. Arvola, I. Bergström, M. Liukkonen & A. Ojala, 1986. The limnology of a small, naturally acidic, highly humic lake. Arch. Hydrobiol. 106: 351–371.

Runner, F., 1963. Fundamentals of limnology. 3rd edn. University of Toronto Press, Toronto, 307 pp.

Ryhänen, R., 1968. Die Bedeutung der Humussubstanzen im Stoffhaushalt der Gewässer Finnlands. Mitt. int. Ver. Limnol. 14: 168–178.

Salonen, K., 1981. The ecosystem of the oligotrophic Lake Pääjarvi. 2. Bacterioplankton. Verh. int. Ver. Limnol. 21: 448–453.

Salonen, K. & L. Arvola, 1988. A radiotracer study of zooplankton grazing in two small humic lakes. Verh. int. Ver. Limnol. 23: 462–469.

Salonen, K. & T. Hammar, 1986. On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters. Oecologia 68: 246–253.

Salonen, K. & S. Jokinen, 1988. Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–209.

Salonen, K. & T. Tulonen, 1990. Photochemical and biological transformations of dissolved humic substances. (Abstract). Verb. int. Ver. Limnol. 24: 294.

Salonen, K., K. Kononen & L. Arvola, 1983. Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101: 65–70.

Salonen, K., L. Arvola, H. De Haan, T. Hammar, S. Jokinen, R. Jones, P. Kankaala, A. Lehtovaara, A. Ojala & U. Smolander, 1987. Progress reports: Research on humic lakes. Lammi Notes 14: 6–7.

Salonen, K., T. Kairesalo, L. Arvola, T. Hammar, P. Kankaala, A. Lehtovaara, A. Ojala & T. Tulonen, 1990. Progress reports: Food chains of humic lakes. Lammi Notes 17: 1.

Salonen, K., L. Arvola, T. Tulonen, T. Hammar, T.-R. Metsälä, P. Kankaala & U. Münster, 1992a. Planktonic food chains of a highly humic lake. I. A mesocosm experiment during the spring primary production maximum. Hydrobiologia 229: 125–142.

Salonen, K., P. Kankaala, T. Tulonen, T. Hammar, M. James, T.-R. Metsälä & L. Arvola, 1992b. Planktonic food chains of a highly humic lake. II. A mesocosm experiment in summer during dominance of heterotrophic processes. Hydrobiologia 229: 143–157.

Sarvala, J., V. Ilmavirta, L. Paasivirta & K. Salonen, 1981. The ecosystem of the oligotrophic Lake Pääjärvi 3. Secondary production and an ecological energy budget of the lake. Verh. int. Ver. Limnol. 21: 422–427.

Sanders, R. W. & K. G. Porter, 1988. Phagotrophic phytoflagellates. Adv. microb. Ecol. 10: 167–192.

Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In C. D. Sandgren (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 9–104.

Satoh, Y. & H. Abe, 1987. Dissolved organic matter in colored water from mountain bog pools in Japan. II. Biological decomposability. Arch. Hydrobiol. 111: 25–35.

Schell, D. M., 1983. Carbon-13 and carbon-14 abundances in Alaskan aquatic organisms: delayed production from peat in Arctic food webs. Science, 219: 1068–1071.

Sederholm, H., A. Mauranen & L. Montonen, 1973. Some observations on the microbial degradation of humus substances in water. Verh. int. Ver. Limnol. 18: 1301–1305.

Sepers, A. B. J., 1977. The utilization of dissolved organic compounds in aquatic environments. Hydrobiologia 52: 39–54.

Sherr, E. B., 1988. Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335: 348–351.

Sherr, B. F., E. B. Sherr & C. S. Hopkinson, 1988. Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow. Hydrobiologia 159: 19–26.

Siegel, A., 1971. Metal-organic interactions in the marine environment. In S. D. Faust & J. V. Hunder (eds), Organic Compounds in Aquatic Environment. Marcel Dekker: 265–295.

Sleigh, M. A., 1989. Protozoa and other protists. Edward Arnold, London, 342 pp.

Stahel, H.-H., K. Moaledj & J. Overbeck, 1979. On the degradation of dissolved organic molecules from Plussee by oligocarbophilic bacteria. Arch. Hydrobiol. Beih. Ergebn. Limnol. 12: 95–104.

Steinberg, C. & G. F. Baltes, 1984. Influence of metal compounds on fulvic acid/molybdenum blue reactive phosphate associations. Arch. Hydrobiol. 100: 61–71.

Steinberg, C. & A. Herrmann, 1981. Utilization of dissolved metal organic compounds by freshwater microorganisms. Verb. int. Ver. Limnol. 21: 231–235.

Steinberg, C. & U. Muenster, 1985. Geochemistry and ecological role of humic substances in lake water. In G. R. Aiken et al. (eds), Humic Substances in Soil, Sediment and Water. J. Wiley & Sons, N.Y.: 104–145.

Stevens, R. J. & B. M. Stewart, 1982. Concentration, fractionation and characterization of soluble organic phosphorus in river water entering Lough Neagh. Wat. Res. 16: 1507–1519.

Stewart, A. J. & R. G. Wetzel, 1981. Dissolved humic materials: Photodegradation, sediment effects, and reactivity with phosphate and calcium carbonate precipitation. Arch. Hydrobiol. 92: 265–286.

Stewart, A. J. & R. G. Wetzel, 1982. Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshwat. Biol. 12: 369–380.

Strome, D. J. & M. C. Miller, 1978. Photolytic changes in dissolved humic substances. Verb. int. Ver. Limnol. 20: 1248–1254.

Sundh, I., 1989. Characterization of phytoplankton extracellular products (PDOC) and their subsequent uptake by heterotrophic organisms in a mesotrophic fores lake. J. Plankton Res. 11: 463–486.

Tailing, J. F., 1957. The phytoplankton population as a compound photosynthetic system. New Phytol. 56: 133–149.

Thienemann, A., 1925. Die Binnengewässer Mitteleuropas. Die Binnengewässer, 1, 255 pp.

Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

Tranvik, L. J., 1989. Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and a clearwater lake. J. Plankton Res. 11: 985–1000.

Tranvik, L. J. & M. G. Höfle, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. envir. Microbiol. 53: 482–488.

Tranvik, L. J., K. G. Porter & J. McN. Sieburth, 1989. Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia 78: 473–476.

Vadstein, O., B. O. Harkjerr, A. Jensen, Y. Olsen & H. Reinertsen, 1989. Cycling of organic carbon in the photic zone of a eutrophic lake with special reference to the heterotrophic bacteria. Limnol. Oceanogr. 34: 840–855.

Veen, A., 1990. Phagotrophy by Dynobryon: a survival strategy in a low-nutrient environment? (Abstract). Br. phycol. J. 25: 98–99.

Visser, S. A., 1984. Seasonal changes in the concentration and colour of humic substances in some aquatic environments. Freshwat. Biol. 14: 79–87.

Wall, D. & F. Briand, 1979. Response of lake phytoplankton communities to in situ manipulations of light intensity and colour. J. Plankton Res. 1: 103–112.

Watanabe, Y. & C. R. Goldman, 1984. Heterotrophic bacterial community in oligotrophic Lake Tahoe. Verh. int. Ver. Limnol. 22: 584–590.

Wetzel, R. G., 1983. Limnology, 2nd edn. W.B. Saunders Co., Philadelphia.

Williams, P. J. leB., 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch. Sonderh. 5: 1–28.

Wright, R. T., 1984. Dynamics of pools of dissolved organic carbon. In J. E. Hobbie & P. J. leB. Williams (eds), Heterotrophic Activity in the Sea. Proc. NATO ARI, Cascais, Portugal, 1981. Plenum, NY: 121–154.

Wright, R. T., 1988. A model for short-term control of the bacterioplankton by substrate and grazing. Hydrobiologia 159: 111–117.