The influence of chemical composition, aerosol acidity, and metal dissolution on the oxidative potential of fine particulate matter and redox potential of the lung lining fluid

Environment International - Tập 148 - Trang 106343 - 2021
Pourya Shahpoury1, Zheng Wei Zhang1, Andrea Arangio2, Valbona Celo3, Ewa Dabek-Zlotorzynska3, Tom Harner1, Athanasios Nenes2,4
1Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
2Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
3Air Quality Research Division, Environment and Climate Change Canada, Ottawa, Canada
4Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece

Tài liệu tham khảo

Almeida, S., Pio, C., Freitas, M., Reis, M., Trancoso, M., 2005. Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast, Atmos. Environ., 39, 3127–3138, doi:10.1016/j.atmosenv.2005.01.048, 2005. Andreae, 2019, Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523, 10.5194/acp-19-8523-2019 Antiñolo, 2015, Connecting the oxidation of soot to its redox cycling abilities, Nat. Commun., 6, 6812, 10.1038/ncomms7812 Ayres, 2008, Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential – a workshop report and consensus statement, Inhal. Toxicol., 20, 75, 10.1080/08958370701665517 Bates, 2019, Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects, Environ. Sci. Technol., 53, 4003, 10.1021/acs.est.8b03430 Battaglia, 2019, Effects of water-soluble organic carbon on aerosol pH, Atmos. Chem. Phys., 19, 14607, 10.5194/acp-19-14607-2019 Bougiatioti, 2016, Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability, Atmos. Chem. Phys., 16, 4579, 10.5194/acp-16-4579-2016 Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q., Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston, G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D., Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L., Martin, R. V., Peters, P., Pinault, L., Tjepkema, M., van Donkelaar, A., Villeneuve, P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen, N. A. H., Marra, M., Atkinson, R. W., Tsang, H., Quoc Thach, T., Cannon, J. B., Allen, R. T., Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F., Weinmayr, G., Jaensch, A., Nagel, G., Concin, H. and Spadaro, J. V.: Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter, Proc. Natl. Acad. Sci., 115(38), 9592–9597, doi:10.1073/pnas.1803222115, 2018. Calas, A., Uzu, G., Martins, J. M. F., Voisin, Di., Spadini, L., Lacroix, T., Jaffrezo, J.-L., 2017. The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter, Sci. Rep., 7, 11617, doi:10.1038/s41598-017-11979-3, 2017. Calas, 2018, Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM10 samples from the city of Chamonix (France), Atmos. Chem. Phys., 18, 7863, 10.5194/acp-18-7863-2018 Calas, 2019, Seasonal variations and chemical predictors of oxidative potential (OP) of particulate matter (PM), for seven urban French sites, Atmosphere, 10, 698, 10.3390/atmos10110698 Calderón-Garcidueñas, 2008, Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adult, Toxicol. Pathol., 36, 289, 10.1177/0192623307313011 Calderón-Garcidueñas, 2008, Systemic inflammation, endothelial dysfunction, and activation in clinically healthy children exposed to air pollutants, Inhal. Toxicol., 20, 499, 10.1080/08958370701864797 Calderón-Garcidueñas, 2019, Combustion- and friction-derived magnetic air pollution nanoparticles in human hearts, Environ. Res., 176, 10.1016/j.envres.2019.108567 Carlton, 2007, Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments, Atmos. Environ., 41, 7588, 10.1016/j.atmosenv.2007.05.035 Carslaw, 2012, Openair - an R package for air quality data analysis, Environ. Model. Softw., 27, 52, 10.1016/j.envsoft.2011.09.008 Cesari, D., De Benedetto, G. E., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., Chirizzi, D., Cristofanelli, P., Donateo, A., Grasso, F. M., Marinoni, A., Pennetta, A. and Contini, D.: Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy, Sci. Total Environ., 612, 202–213, doi:10.1016/j.scitotenv.2017.08.230, 2018. Celo, V., Dabek-Zlotorzynska, E., Mathieu, D. and Okonskaia, I.: Validation of a simple microwave-assisted acid digestion method using microvessels for analysis of trace elements in atmospheric PM2.5 in monitoring and fingerprinting studies, Open Chem. Biomed. Methods J., 3, 143–152, doi:10.2174/1875038901003010143, 2010. Charrier, 2012, On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals, Atmos. Chem. Phys., 12, 9321, 10.5194/acp-12-9321-2012 Chirizzi, D., Cesari, D., Guascito, M. R., Dinoi, A., Giotta, L., Donateo, A. and Contini, D.: Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10, Atmos. Environ., 163, 1-8, doi:10.1016/j.atmosenv.2017.05.021, 2017. Cohen, 2017, Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet, 389, 1907, 10.1016/S0140-6736(17)30505-6 Copeland, 2014, Measuring the oxidation–reduction potential of important oxidants in drinking water, J. Am. Water Work. Assoc., 106, 10, 10.5942/jawwa.2014.106.0002 Costabile, 2020, Ultrafine particle features associated with pro-inflammatory and oxidative responses: implications for health studies, Atmosphere, 11, 414, 10.3390/atmos11040414 Crobeddu, B., Aragao-Santiago, L., Bui, L.-C., Boland, S. and Baeza Squiban, A.: Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress, Environ. Pollut., 230, 125–133, doi:10.1016/j.envpol.2017.06.051, 2017. Crobeddu, 2020, Lung antioxidant depletion: a predictive indicator of cellular stress induced by ambient fine particles, Environ. Sci. Technol., 54, 2360, 10.1021/acs.est.9b05990 Dabek-Zlotorzynska, E., Dann, T. F., Kalyani Martinelango, P., Celo, V., Brook, J. R., Mathieu, D., Ding, L. and Austin, C. C.: Canadian National Air Pollution Surveillance (NAPS) PM2.5 speciation program: Methodology and PM2.5 chemical composition for the years 2003–2008, Atmos. Environ., 45, 673–686, doi:10.1016/j.atmosenv.2010.10.024, 2011. Dabek-Zlotorzynska, E., Celo, V., Ding, L., Herod, D., Jeong, C. H., Evans, G. and Hilker, N.: Characteristics and sources of PM2.5 and reactive gases near roadways in two metropolitan areas in Canada, Atmos. Environ., 218, 116980, doi:10.1016/j.atmosenv.2019.116980, 2019. de Jesus, A. L., Rahman, M. M., Mazaheri, M., Thompson, H., Knibbs, L. D., Jeong, C., Evans, G., Nei, W., Ding, A., Qiao, L., Li, L., Portin, H., Niemi, J. V., Timonen, H., Luoma, K., Petäjä, T., Kulmala, M., Kowalski, M., Peters, A., Cyrys, J., Ferrero, L., Manigrasso, M., Avino, P., Buonano, G., Reche, C., Querol, X., Beddows, D., Harrison, R. M., Sowlat, M. H., Sioutas, C. and Morawska, L.: Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other?, Environ. Int., 129, 118-135, doi:10.1016/j.envint.2019.05.021, 2019. Fang, 2017, Highly acidic ambient particles, soluble metals, and oxidative potential: a link between sulfate and aerosol toxicity, Environ. Sci. Technol., 51, 2611, 10.1021/acs.est.6b06151 Fang, 2017, Ambient size distributions and lung deposition of aerosol dithiothreitol-measured oxidative potential: contrast between soluble and insoluble particles, Environ. Sci. Technol., 51, 6802, 10.1021/acs.est.7b01536 Fang, 2019, Oxidative potential of particulate matter and generation of reactive oxygen species in epithelial lining fluid, Environ. Sci. Technol., 53, 12784, 10.1021/acs.est.9b03823 Fountoukis, 2007, ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+ −Ca2+ −Mg2+ −NH4+ −Na+ −SO42− −NO3−, –Cl− –H2O, Atmos. Chem. Phys., 7, 4639, 10.5194/acp-7-4639-2007 Freedman, 2019, Role of pH in aerosol processes and measurement challenges, J. Phys. Chem. A, 123, 1275, 10.1021/acs.jpca.8b10676 Gao, 2020, Characterization and comparison of PM2.5 oxidative potential assessed by two acellular assays, Atmos. Chem. Phys., 20, 5197, 10.5194/acp-20-5197-2020 Garg, 2000, Brake wear particulate matter emissions, Environ. Sci. Technol., 34, 4463, 10.1021/es001108h Gonet, 2019, Airborne, vehicle-derived Fe-bearing nanoparticles in the urban environment: a review, Environ. Sci. Technol., 53, 9970, 10.1021/acs.est.9b01505 Gonet, 2021, Source apportionment of magnetite particles in roadside airborne particulate matter, Sci. Total Environ., 752, 10.1016/j.scitotenv.2020.141828 Guo, 2015, Fine-particle water and pH in the southeastern United States, Atmos. Chem. Phys., 15, 5211, 10.5194/acp-15-5211-2015 Hennig, 2018, Ultrafine and fine particle number and surface area concentrations and daily cause-specific mortality in the Ruhr area, Germany, 2009–2014, Environ. Health Perspect., 126, 10.1289/EHP2054 Hennigan, 2015, a critical evaluation of proxy methods used to estimate the acidity of atmospheric particles, Atmos. Chem. Phys., 15, 2775, 10.5194/acp-15-2775-2015 Hoek, 2013, Long-term air pollution exposure and cardio- respiratory mortality: a review, Environ. Heal., 12, 43, 10.1186/1476-069X-12-43 Ito, 2019, Pyrogenic iron: the missing link to high iron solubility in aerosols, Sci. Adv., 5, 7671, 10.1126/sciadv.aau7671 Iyer, 2009, Oxidation of plasma cysteine/cystine redox state in endotoxin-induced lung injury, Am. J. Respir. Cell Mol. Biol., 40, 90, 10.1165/rcmb.2007-0447OC Jones, 2000, Redox state of glutathione in human plasma, Free Radic. Biol. Med., 28, 625, 10.1016/S0891-5849(99)00275-0 Kelly, 2017, Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution, Free Radic. Biol. Med., 110, 345, 10.1016/j.freeradbiomed.2017.06.019 Kitanovski, 2020, Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471, 10.5194/acp-20-2471-2020 Kupiainen, 2005, Size and composition of airborne particles from pavement wear, tires, and traction sanding, Environ. Sci. Technol., 39, 699, 10.1021/es035419e Lakey, 2016, Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract, Sci. Rep., 6, 32916, 10.1038/srep32916 Lammel, 2020, Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons in Ambient Air—Levels, Phase Partitioning, Mass Size Distributions, and Inhalation Bioaccessibility, Environ. Sci. Technol., 54, 2615, 10.1021/acs.est.9b06820 Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N. (Nil), Baldé, A. B., Bertollini, R., Bose-O’Reilly, S., Boufford, J. I., Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M. L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K. V., McTeer, M. A., Murray, C. J. L., Ndahimananjara, J. D., Perera, F., Potočnik, J., Preker, A. S., Ramesh, J., Rockström, J., Salinas, C., Samson, L. D., Sandilya, K., Sly, P. D., Smith, K. R., Steiner, A., Stewart, R. B., Suk, W. A., van Schayck, O. C. P., Yadama, G. N., Yumkella, K. and Zhong, M.: the Lancet Commission on pollution and health, Lancet, 391, 462-512, doi:10.1016/S0140-6736(17)32345-0, 2018. Lelieveld, 2018, Age-dependent health risk from ambient air pollution: a modelling and data analysis of childhood mortality in middle-income and low-income countries, Lancet Planet. Heal., 2, 292, 10.1016/S2542-5196(18)30147-5 Lelieveld, 2019, Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions, Eur. Heart J., 40, 1590, 10.1093/eurheartj/ehz135 Lelieveld, 2019, Effects of fossil fuel and total anthropogenic emission removal on public health and climate, Proc. Natl. Acad. Sci., 116, 7192, 10.1073/pnas.1819989116 Liu, 2021, Evidence for the presence of air pollution nanoparticles in placental tissue cells, Sci. Total Environ., 751, 10.1016/j.scitotenv.2020.142235 Liu, 2020, Understanding the key role of atmospheric processing in determining the oxidative potential of airborne engineered nanoparticles, Environ. Sci. Technol. Lett., 7, 7, 10.1021/acs.estlett.9b00700 Maher, 2016, Magnetite pollution nanoparticles in the human brain, Proc. Natl. Acad. Sci., 113, 10797, 10.1073/pnas.1605941113 Maher, 2020, Iron-rich air pollution nanoparticles: an unrecognised environmental risk factor for myocardial mitochondrial dysfunction and cardiac oxidative stress, Environ. Res., 188, 10.1016/j.envres.2020.109816 McWhinney, 2013, Filterable redox cycling activity: a comparison between diesel exhaust particles and secondary organic aerosol constituents, Environ. Sci. Technol., 47, 3362, 10.1021/es304676x Milani, 2004, First evidence of tyre debris characterization at the nanoscale by focused ion beam, Mater. Charact., 52, 283, 10.1016/j.matchar.2004.06.001 Miller, 2007, The fate of metal (Fe) during diesel combustion: morphology, chemistry, and formation pathways of nanoparticles, Combust. Flame, 149, 129, 10.1016/j.combustflame.2006.12.005 Münzel, 2018, Effects of gaseous and solid constituents of air pollution on endothelial function, Eur. Heart J., 39, 3543, 10.1093/eurheartj/ehy481 Myriokefalitakis, 2015, Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study, Biogeosciences, 12, 3973, 10.5194/bg-12-3973-2015 Nah, T., Guo, H., Sullivan, A. P., Chen, Y., Tanner, D. J., Nenes, A., Russell, A., Lee Ng, N., Gregory Huey, L. and Weber, R. J.: Characterization of aerosol composition, aerosol acidity, and organic acid partitioning at an agriculturally intensive rural southeastern US site, Atmos. Chem. Phys., 18, 11471-11491, doi:10.5194/acp-18-11471-2018, 2018. Nico, 2009, Redox dynamics of mixed metal (Mn, Cr, and Fe) ultrafine particles, Aerosol Sci. Technol., 43, 60, 10.1080/02786820802482528 Nordstrom, D. K. and Wilde, F. D.: Reduction-oxidation potential (electrode method), U.S. Geological Survey, Reston, VA., 2005. Oberdörster, 2005, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect., 113, 823, 10.1289/ehp.7339 Øvrevik, 2019, Oxidative potential versus biological effects: a review on the relevance of cell-free/abiotic assays as predictors of toxicity from airborne particulate matter, Int. J. Mol. Sci., 20, 4772, 10.3390/ijms20194772 Panias, 1996, Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions, Hydrometallurgy, 42, 257, 10.1016/0304-386X(95)00104-O Pio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F., Alves, C., Oliveira, C., Sanchez de la Campa, A., Artíñano, B. and Matos, M.: OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon, Atmos. Environ., 45, 6121–6132, doi:https://doi.org/10.1016/j.atmosenv.2011.08.045, 2011. Pope, 2011, Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure–response relationships, Environ. Health Perspect., 119, 1616, 10.1289/ehp.1103639 Pye, 2020, The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809, 10.5194/acp-20-4809-2020 Riediker, 2019, Particle toxicology and health – where are we?, Part. Fibre Toxicol., 16, 19, 10.1186/s12989-019-0302-8 Shahpoury, 2019, Development of an antioxidant assay to study oxidative potential of airborne particulate matter, Atmos. Meas. Tech., 12, 6529, 10.5194/amt-12-6529-2019 Shen, 2013, Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China, Environ. Sci. Technol., 47, 2998, 10.1021/es304599g Shiraiwa, 2017, Aerosol health effects from molecular to global scales, Environ. Sci. Technol., 51, 13545, 10.1021/acs.est.7b04417 Sofowote, U. M., Su, Y., Dabek-Zlotorzynska, E., Rastogi, A. K., Brook, J. and Hopke, P. K.: Constraining the factor analytical solutions obtained from multiple-year receptor modeling of ambient PM2.5 data from five speciation sites in Ontario, Canada, Atmos. Environ., 108, 151–157, doi:10.1016/j.atmosenv.2015.02.045, 2015a. Sofowote, U. M., Su, Y., Dabek-Zlotorzynska, E., Rastogi, A. K., Brook, J. and Hopke, P. K.: Sources and temporal variations of constrained PMF factors obtained from multiple-year receptor modeling of ambient PM2.5 data from five speciation sites in Ontario, Canada, Atmos. Environ., 108, 140–150, doi:10.1016/j.atmosenv.2015.02.055, 2015b. Song, 2018, Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models, Atmos. Chem. Phys., 18, 7423, 10.5194/acp-18-7423-2018 Song, 2010, Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide, Free Radic. Biol. Med., 49, 919, 10.1016/j.freeradbiomed.2010.05.009 Striggow, B.: Field measurement of oxidation-reduction potential (ORP), U.S. Environmental Protection Agency, Athens, GA., 2017. Tao, Y. and Murphy, J. G.: the mechanisms responsible for the interactions among oxalate, pH, and Fe dissolution in PM2.5, ACS Earth Sp. Chem., 3, 2259–2265, doi:10.1021/acsearthspacechem.9b00172, 2019. Tapparo, 2020, Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley, Chemosphere, 241, 10.1016/j.chemosphere.2019.125025 Vasilakos, 2018, Understanding nitrate formation in a world with less sulfate, Atmos. Chem. Phys., 18, 12765, 10.5194/acp-18-12765-2018 Verma, 2016, Wear debris from brake system materials: a multi-analytical characterization approach, Tribol. Int., 94, 249, 10.1016/j.triboint.2015.08.011 Verma, V., Fang, T., Xu, L., Peltier, R. E., Russell, A. G., Ng, N. L. and Weber, R. J.: Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5, Environ. Sci. Technol., 49, 4646-4656, doi:10.1021/es505577w, 2015. Vicente, E. D., Vicente, A. M., Musa Bandowe, B. A. and Alves, C. A.: Particulate phase emission of parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, azaarenes and nitrated PAHs) from manually and automatically fired combustion appliances, Air Qual. Atmos. Heal., 9, 653–668, doi:10.1007/s11869-015-0364-1, 2016. Weber, 2018, An apportionment method for the oxidative potential of atmospheric particulate matter sources: application to a one-year study in Chamonix, France, Atmos. Chem. Phys., 18, 9617, 10.5194/acp-18-9617-2018 Weichenthal, 2016, Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC), Environ. Res., 146, 92, 10.1016/j.envres.2015.12.013 Weichenthal, S., Lavigne, E., Evans, G., Pollitt, K. and Burnett, R. T.: Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study, Environ. Heal., 15, 46, doi:10.1186/s12940-016-0129-9, 2016b. Weichenthal, S. A., Lavigne, E., Evans, G. J., Godri Pollitt, K. J. and Burnett, R. T.: Fine particulate matter and emergency room visits for respiratory illness. Effect modification by oxidative potential, Am. J. Respir. Crit. Care Med., 194, 577–586, doi:10.1164/rccm.201512-2434OC, 2016c. Weichenthal, S., Shekarrizfard, M., Traub, A., Kulka, R., Al-Rijleh, K., Anowar, S., Evans, G. and Hatzopoulou, M.: Within-City Spatial Variations in Multiple Measures of PM 2.5 Oxidative Potential in Toronto, Canada, Environ. Sci. Technol., 53, 2799–2810, doi:10.1021/acs.est.8b05543, 2019. WHO: Ambient air pollution: a global assessment of exposure and burden of disease, World Health Organization., 2016. Wong, 2019, Effects of atmospheric processing on the oxidative potential of biomass burning organic aerosols, Environ. Sci. Technol., 53, 6747, 10.1021/acs.est.9b01034 Wong, 2020, Fine particle iron in soils and road dust is modulated by coal-fired power plant sulfur, Environ. Sci. Technol. Xiong, 2017, Rethinking dithiothreitol-based particulate matter oxidative potential: measuring dithiothreitol consumption versus reactive oxygen species generation, Environ. Sci. Technol., 51, 6507, 10.1021/acs.est.7b01272 Ye, D., Klein, M., Mulholland, J. A., Russell, A. G., Weber, R., Edgerton, E. S., Chang, H. H., Sarnat, J. A., Tolbert, P. E. and Ebelt Sarnat, S.: Estimating Acute Cardiovascular Effects of Ambient PM2.5 Metals, Environ. Health Perspect., 126, 27007, doi:10.1289/EHP2182, 2018. Zhang, X., Hecobian, A., Zheng, M., Frank, N. H. and Weber, R. J.: Biomass burning impact on PM2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis, Atmos. Chem. Phys., 10, 6839–6853, doi:10.5194/acp-10-6839-2010, 2010. Zhou, 2015, Sources and atmospheric processes impacting oxalate at a suburban coastal site in Hong Kong: Insights inferred from 1year hourly measurements, J. Geophys. Res., 120, 9772, 10.1002/2015JD023531