The inflammatory infiltrate in the acute stage of the dextran sulphate sodium induced colitis: B cell response differs depending on the percentage of DSS used to induce it

BMC Clinical Pathology - Tập 1 - Trang 1-11 - 2001
Liljana Stevceva1, Paul Pavli1, Alan J Husband2, William F Doe1
1Division of Molecular Medicine, John Curtin School of Medical Research, Australian National University, Sydney, Australia
2Faculty of Veterinary Science, The University of Sydney, Sydney, Australia

Tóm tắt

Experimental colitis with features similar to inflammatory bowel disease (IBD) has initially been described. A detailed analysis of inflammatory cells has not yet been described. Therefore in this study we characterized the cells involved in the acute phase of the colitis and compared those findings to what is known about human IBD. Colitis was induced in BALB/C and C57Bl6 mice by ingestion of 2.5% and 5% DSS in the drinking water for 8 days. Cells were labelled by immunohistochemical staining with F4/80 and ER-MP20 for macrophages, TIB 120 for MHC Class II presentation, and anti-CD4 and anti-CD8 antibodies. They were enumerated by using a novel method that employs video image analysis. Immunoglobulin-producing cells were enumerated by immunofluorescent staining for IgA, IgG and IgM and counting by using confocal microscopy. Inflammatory infiltrate in the acute phase of the dextran sulphate sodium (DSS) -induced colitis consists predominantly of macrophages, neutrophils and eosinophils. Neutrophils increase in numbers and crypt abscesses were also seen. Increased macrophage numbers were due to recently recruited monocytes from the peripheral circulation. It does not appear that there are any changes in T cell numbers or distribution. The inflammation induced changes in immunoglobulin-producing cells with IgA-producing cells affected the most. The effect on Ig-producing cells depends on the percentage of DSS used to induce colitis. In general, 2.5% DSS induces an increase and 5% DSS a depletion of these cells.

Tài liệu tham khảo

Nagashima R, Maeda K, Imai Y, Takahashi T: Lamina propria macrophages in the human gastrointestinal mucosa: their distribution, immunohistological phenotype, and function. J Histochem Cytochem. 1996, 44: 721-731. Hume DA, Allan W, Hogan PG, Doe WF: Immunohistochemical characterisation of macrophages in human liver and gastrointestinal tract: expression of CD4, HLA-DR, OKM1, and the mature macrophage marker 25F9 in normal and diseased tissue. J Leukoc Biol. 1987, 42: 474-484. Oshitani N, Campbell A, Kitano A, Kobayashi K, Jewell DP: In situ comparison of phenotypical and functional activity of infiltrating cells in ulcerative colitis mucosa. J Pathol. 1996, 178: 95-99. 10.1002/(SICI)1096-9896(199601)178:1<95::AID-PATH402>3.0.CO;2-P. Rugtveit J, Brandtzaeg P, Halstensen TS, Fausa O, Scott H: Increased macrophage subset in inflammatory bowel disease: apparent recruitment from peripheral blood monocytes. Gut. 1994, 35: 669-674. Grimm MC, Pullman WE, Bennett GM, Sullivan PJ, Pavli P, Doe WF: Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa. J Gastroenterol Hepatol. 1995, 10: 387-395. Britigan BE, Coffman TJ, Adelberg DR, Cohen MS: Mononuclear phagocytes have the potential for sustained hydroxyl radical production. Use of spin-trapping techniques to investigate mononuclear phagocyte free radical production. J Exp Med. 1988, 168: 2367-2372. Hirata I, Berrebi G, Austin LL, Keren DF, Dobbins WO: Immunohistological characterization of intraepithelial and lamina propria lymphocytes in control ileum and colon and in inflammatory bowel disease. Dig Dis Sci. 1986, 31: 593-603. Senju M, Wu KC, Mahida YR, Jewell DP: Coexpression of CD4 and CD8 on peripheral blood T cells and lamina propria T cells in inflammatory bowel disease by two colour immunofluorescence and flow cytometric analysis. Gut. 1991, 32: 918-922. Brandtzaeg P, Baklien K, Fausa O, Hoel PS: Immunohistochemical characterization of local immunoglobulin formation in ulcerative colitis. Gastroenterology. 1974, 66: 1123-1136. Wu KC, Mahida YR, Priddle JD, Jewell DP: Immunoglobulin production by isolated intestinal mononuclear cells from patients with ulcerative colitis and Crohn's disease. Clin Exp Immunol. 1989, 78: 37-41. Scott MG, Nahm MH, Macke K, Nash GS, Bertovich MJ, MacDermott RP: Spontaneous secretion of IgG subclasses by intestinal mononuclear cells: differences between ulcerative colitis, Crohn's disease, and controls. Clin Exp Immunol. 1986, 66: 209-215. MacDermott RP, Nash GS, Auer IO, Shlien R, Lewis BS, Madassery J, Nahm MH: Alterations in serum immunoglobulin G subclasses in patients with ulcerative colitis and Crohn's disease. Gastroenterology. 1989, 96: 764-768. Gryboski JD, Buie T: Immunoglobulin studies in children with inflammatory bowel disease. Ann Allergy. 1994, 72: 525-527. Cicalese L, Duerr RH, Nalesnik MA, Heeckt PF, Lee KK, Schraut WH: Decreased mucosal IgA levels in ileum of patients with chronic ulcerative colitis. Dig Dis Sci. 1995, 40: 805-811. Philipsen EK, Bondesen S, Andersen J, Larsen S: Serum immunoglobulin G subclasses in patients with ulcerative colitis and Crohn's disease of different disease activities. Scand J Gastroenterol. 1995, 30: 50-53. Badr-el-Din S, Trejdosiewicz LK, Heatley RV, Losowsky MS: Local immunity in ulcerative colitis: evidence for defective secretory IgA production. Gut. 1988, 29: 1070-1075. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R: A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990, 98: 694-702. Stevceva L, Pavli P, Buffinton G, Wozniak A, Doe WF: Dextran sodium sulphate-induced colitis activity varies with mouse strain but develops in lipopolysaccharide-unresponsive mice. J Gastroenterol Hepatol. 1999, 14: 54-60. 10.1046/j.1440-1746.1999.01806.x. Kongtawelert P, Ghosh P: A monoclonal antibody that recognizes 2,3-, 2,6-, and 4,6-disulphate ester ring substitution in pyranose-containing polysaccharides. Its production, characterization and application for the quantitation of pentosan polysulphate, dextran sulphate, glycosaminoglycan polysulphate and chondroitin sulphate E. J Immunol Methods. 1990, 126: 39-49. 10.1016/0022-1759(90)90009-K. Sainte-Marie G: A paraffin embeding technique for studies employing immunofluorescence. J Histochem Cytochem. 1962, 10: 250-256. Sheldrake RF, Husband AJ, Watson DL, Cripps AW: Selective transport of serum-derived IgA into mucosal secretions. J Immunol. 1984, 132: 363-368. Husband AJ, Gowans JL: The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J Exp Med. 1978, 148: 1146-1160. Leenen PJ, Melis M, Slieker WA, Van Ewijk W: Murine macrophage precursor characterization. II. Monoclonal antibodies against macrophage precursor antigens. Eur J Immunol. 1990, 20: 27-34. Natsui M, Kawasaki K, Takizawa H, Hayashi SI, Matsuda Y, Sugimura K, Seki K, Narisawa R, Sendo F, Asakura H: Selective depletion of neutrophils by a monoclonal antibody, RP-3, suppresses dextran sulphate sodium-induced colitis in rats. J Gastroenterol Hepatol. 1997, 12: 801-808. Stevceva L, Pavli P, Husband A, Matthaei KI, Young IG, Doe WF: Eosinophilia is attenuated in experimental colitis induced in IL-5 deficient mice. Genes Immun. 2000, 1: 213-218. 10.1038/sj.gene.6363654. Hume DA, Halpin D, Charlton H, Gordon S: The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc Natl Acad Sci U S A. 1984, 81: 4174-4177. Ohkusa T, Okayasu I, Tokoi S, Araki A, Ozaki Y: Changes in bacterial phagocytosis of macrophages in experimental ulcerative colitis. Digestion. 1995, 56: 159-164. Bloksma N, de Reuver MJ, Willers JM: Influence on macrophage functions as a possible basis of immunomodification by polyanions. Ann Immunol (Paris). 1980, 131D: 255-265. Squarcia O, Fais S, Boirivant M, Di Paolo MC, Marcheggiano A, Iannoni C, Paoluzi P, Pallone F: Phenotypes and spontaneous immunoglobulin production in mononuclear cells suspensions isolated from colonic biopsies of patients with mild active and quiescent ulcerative colitis. Gastroenterol Clin Biol. 1991, 15: 194-198. Coutinho A, Moller G, Richter W: Molecular basis of B-cell activation. I. Mitogenicity of native and substituted dextrans. Scand J Immunol. 1974, 3: 321-328. Coutinho A, Gronowicz E, Sultzer BM: Genetic control of B-cell responses. I. Selective unresponsiveness to lipopolysaccharide. Scand J Immunol. 1975, 4: 139-143. Bergstedt-Lindqvist S, Fernandez C, Severinson E: A synergistic polyclonal response to dextran sulphate and lipopolysaccharide: immunoglobulin secretion and cell requirements. Scand J Immunol. 1981, 15: 439-448. Dieleman LA, Ridwan BU, Tennyson GS, Beagley KW, Bucy RP, Elson CO: Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology. 1994, 107: 1643-1652. Bosma MJ, Carroll AM: The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol. 1991, 9: 323-350. 10.1146/annurev.immunol.9.1.323. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6890/1/3/prepub