The inflammasome: Learning from bacterial evasion strategies
Tài liệu tham khảo
Janeway, 1989, Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harb. Symp. Quant. Biol., 54 Pt 1, 1, 10.1101/SQB.1989.054.01.003
Janeway, 2002, Innate immune recognition, Annu. Rev. Immunol., 20, 197, 10.1146/annurev.immunol.20.083001.084359
Kawai, 2011, Toll-like receptors and their crosstalk with other innate receptors in infection and immunity, Immunity, 34, 637, 10.1016/j.immuni.2011.05.006
Gurcel, 2006, Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival, Cell, 126, 1135, 10.1016/j.cell.2006.07.033
Lamkanfi, 2009, Inflammasomes: guardians of cytosolic sanctity, Immunol. Rev., 227, 95, 10.1111/j.1600-065X.2008.00730.x
Lamkanfi, 2014, Mechanisms and functions of inflammasomes, Cell, 157, 1013, 10.1016/j.cell.2014.04.007
Davis, 2011, The inflammasome NLRs in immunity, inflammation, and associated diseases, Annu. Rev. Immunol., 29, 707, 10.1146/annurev-immunol-031210-101405
Faustin, 2007, Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation, Mol. Cell, 25, 713, 10.1016/j.molcel.2007.01.032
Martinon, 2002, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta, Mol. Cell, 10, 417, 10.1016/S1097-2765(02)00599-3
Lu, 2014, Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes, Cell, 156, 1193, 10.1016/j.cell.2014.02.008
Dostert, 2008, Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica, Science, 320, 674, 10.1126/science.1156995
Hornung, 2010, Critical functions of priming and lysosomal damage for NLRP3 activation, Eur. J. Immunol., 40, 620, 10.1002/eji.200940185
Kahlenberg, 2004, Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release, Am. J. Physiol. Cell Physiol., 286, C1100, 10.1152/ajpcell.00494.2003
Kanneganti, 2006, Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA, J. Biol. Chem., 281, 36560, 10.1074/jbc.M607594200
Mariathasan, 2006, Cryopyrin activates the inflammasome in response to toxins and ATP, Nature, 440, 228, 10.1038/nature04515
Martinon, 2006, Gout-associated uric acid crystals activate the NALP3 inflammasome, Nature, 440, 237, 10.1038/nature04516
Petrilli, 2007, Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration, Cell Death Differ., 14, 1583, 10.1038/sj.cdd.4402195
Wen, 2011, Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling, Nat. Immunol., 12, 408, 10.1038/ni.2022
Wen, 2012, A role for the NLRP3 inflammasome in metabolic diseases – did Warburg miss inflammation, Nat. Immunol., 13, 352, 10.1038/ni.2228
Zhou, 2011, A role for mitochondria in NLRP3 inflammasome activation, Nature, 469, 221, 10.1038/nature09663
Iyer, 2013, Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation, Immunity, 39, 311, 10.1016/j.immuni.2013.08.001
Munoz-Planillo, 2013, K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter, Immunity, 38, 1142, 10.1016/j.immuni.2013.05.016
Miao, 2006, Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf, Nat. Immunol., 7, 569, 10.1038/ni1344
Miao, 2008, Pseudomonas aeruginosa activates caspase 1 through Ipaf, Proc. Natl. Acad. Sci. U. S. A., 105, 2562, 10.1073/pnas.0712183105
Miao, 2010, Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome, Proc. Natl. Acad. Sci. U. S. A., 107, 3076, 10.1073/pnas.0913087107
Molofsky, 2006, Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection, J. Exp. Med., 203, 1093, 10.1084/jem.20051659
Ren, 2006, Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity, PLoS Pathog., 2, e18, 10.1371/journal.ppat.0020018
Sun, 2007, Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium, J. Biol. Chem., 282, 33897, 10.1074/jbc.C700181200
Sutterwala, 2007, Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome, J. Exp. Med., 204, 3235, 10.1084/jem.20071239
Yang, 2013, Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation, Proc. Natl. Acad. Sci. U. S. A., 110, 14408, 10.1073/pnas.1306376110
Zhao, 2011, The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus, Nature, 477, 596, 10.1038/nature10510
Kofoed, 2011, Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity, Nature, 477, 592, 10.1038/nature10394
Lightfield, 2008, Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin, Nat. Immunol., 9, 1171, 10.1038/ni.1646
Rayamajhi, 2013, Cutting edge: mouse NAIP1 detects the type III secretion system needle protein, J. Immunol., 191, 3986, 10.4049/jimmunol.1301549
Suzuki, 2014, Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcdelta, PLoS Pathog., 10, e1003926, 10.1371/journal.ppat.1003926
Zamboni, 2006, The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection, Nat. Immunol., 7, 318, 10.1038/ni1305
Broz, 2010, Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing, Cell Host Microbe, 8, 471, 10.1016/j.chom.2010.11.007
Boyden, 2006, Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin, Nat. Genet., 38, 240, 10.1038/ng1724
Cirelli, 2014, Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii, PLoS Pathog., 10, e1003927, 10.1371/journal.ppat.1003927
Ewald, 2014, NLRP1 is an inflammasome sensor for Toxoplasma gondii, Infect. Immun., 82, 460, 10.1128/IAI.01170-13
Gorfu, 2014, Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii, MBio, 2014
Chavarria-Smith, 2013, Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor, PLoS Pathog., 9, e1003452, 10.1371/journal.ppat.1003452
Levinsohn, 2012, Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome, PLoS Pathog., 8, e1002638, 10.1371/journal.ppat.1002638
Guey, 2014, Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function, Proc. Natl. Acad. Sci. U. S. A., 111, 17254, 10.1073/pnas.1415756111
Witola, 2011, NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells, Infect. Immun., 79, 756, 10.1128/IAI.00898-10
Kayagaki, 2011, Non-canonical inflammasome activation targets caspase-11, Nature, 479, 117, 10.1038/nature10558
Broz, 2012, Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1, Nature, 490, 288, 10.1038/nature11419
Gurung, 2012, Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-beta (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens, J. Biol. Chem., 287, 34474, 10.1074/jbc.M112.401406
Rathinam, 2012, TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria, Cell, 10.1016/j.cell.2012.07.007
Case, 2013, Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila, Proc. Natl. Acad. Sci. U. S. A., 110, 1851, 10.1073/pnas.1211521110
Casson, 2013, Caspase-11 activation in response to bacterial secretion systems that access the host cytosol, PLoS Pathog., 9, e1003400, 10.1371/journal.ppat.1003400
Casson, 2013, Inflammasome-mediated cell death in response to bacterial pathogens that access the host cell cytosol: lessons from legionella pneumophila, Front. Cell. Infect. Microbiol., 3, 111, 10.3389/fcimb.2013.00111
Hagar, 2013, Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock, Science, 341, 1250, 10.1126/science.1240988
Kayagaki, 2013, Noncanonical inflammasome activation by intracellular LPS independent of TLR4, Science, 341, 1246, 10.1126/science.1240248
Meunier, 2014, Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases, Nature, 509, 366, 10.1038/nature13157
Pilla, 2014, Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS, Proc. Natl. Acad. Sci. U. S. A., 111, 6046, 10.1073/pnas.1321700111
Shi, 2014, Inflammatory caspases are innate immune receptors for intracellular LPS, Nature, 514, 187, 10.1038/nature13683
Knodler, 2014, Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens, Cell Host Microbe, 16, 249, 10.1016/j.chom.2014.07.002
Wang, 1998, Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE, Cell, 92, 501, 10.1016/S0092-8674(00)80943-5
von Moltke, 2013, Recognition of bacteria by inflammasomes, Annu. Rev. Immunol., 31, 73, 10.1146/annurev-immunol-032712-095944
Taxman, 2010, Inflammasome inhibition as a pathogenic stealth mechanism, Cell Host Microbe, 8, 7, 10.1016/j.chom.2010.06.005
Palm, 2013, Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity, Immunity, 39, 976, 10.1016/j.immuni.2013.10.006
Galle, 2008, The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1beta maturation, J. Cell. Mol. Med., 12, 1767, 10.1111/j.1582-4934.2007.00190.x
Schotte, 2004, Targeting Rac1 by the Yersinia effector protein YopE inhibits caspase-1-mediated maturation and release of interleukin-1beta, J. Biol. Chem., 279, 25134, 10.1074/jbc.M401245200
Hoffmann, 2010, In macrophages, caspase-1 activation by SopE and the type III secretion system-1 of S. typhimurium can proceed in the absence of flagellin, PLoS ONE, 5, e12477, 10.1371/journal.pone.0012477
Muller, 2009, The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation, Cell Host Microbe, 6, 125, 10.1016/j.chom.2009.07.007
Fu, 1999, A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion, Nature, 401, 293, 10.1038/45829
Hardt, 1998, S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells, Cell, 93, 815, 10.1016/S0092-8674(00)81442-7
Raffatellu, 2009, Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine, Cell Host Microbe, 5, 476, 10.1016/j.chom.2009.03.011
Winter, 2010, Gut inflammation provides a respiratory electron acceptor for Salmonella, Nature, 467, 426, 10.1038/nature09415
Hornung, 2008, Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization, Nat. Immunol., 9, 847, 10.1038/ni.1631
Bruno, 2009, Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells, PLoS Pathog., 5, e1000538, 10.1371/journal.ppat.1000538
Keestra, 2013, Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1, Nature, 496, 233, 10.1038/nature12025
LaRock, 2012, The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing, Cell Host Microbe, 12, 799, 10.1016/j.chom.2012.10.020
Miao, 1999, Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems, Mol. Microbiol., 34, 850, 10.1046/j.1365-2958.1999.01651.x
Leung, 1990, YopM inhibits platelet aggregation and is necessary for virulence of Yersinia pestis in mice, Infect. Immun., 58, 3262, 10.1128/IAI.58.10.3262-3271.1990
McPhee, 2012, Interleukin-10 induction is an important virulence function of the Yersinia pseudotuberculosis type III effector YopM, Infect. Immun., 80, 2519, 10.1128/IAI.06364-11
Boland, 1998, Role of YopP in suppression of tumor necrosis factor alpha release by macrophages during Yersinia infection, Infect. Immun., 66, 1878, 10.1128/IAI.66.5.1878-1884.1998
Chung, 2014, IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM, MBio, 5, e01402, 10.1128/mBio.01402-14
Jameson, 2013, IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors, Nat. Med., 19, 626, 10.1038/nm.3165
McLaughlin, 2009, The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration, PLoS Pathog., 5, e1000671, 10.1371/journal.ppat.1000671
Philip, 2014, Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-kappaB and MAPK signaling, Proc. Natl. Acad. Sci. U. S. A., 111, 7385, 10.1073/pnas.1403252111
Weng, 2014, Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death, Proc. Natl. Acad. Sci. U. S. A., 111, 7391, 10.1073/pnas.1403477111
Fernandes-Alnemri, 2009, AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA, Nature, 10.1038/nature07710
Hornung, 2009, AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC, Nature, 10.1038/nature07725
Jones, 2010, Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis, Proc. Natl. Acad. Sci. U. S. A., 107, 9771, 10.1073/pnas.1003738107
Peng, 2011, Elevated AIM2-mediated pyroptosis triggered by hypercytotoxic Francisella mutant strains is attributed to increased intracellular bacteriolysis, Cell. Microbiol., 13, 1586, 10.1111/j.1462-5822.2011.01643.x
Rathinam, 2010, The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses, Nat. Immunol., 11, 395, 10.1038/ni.1864
Sauer, 2010, Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol, Cell Host Microbe, 7, 412, 10.1016/j.chom.2010.04.004
Warren, 2010, Cutting edge: cytosolic bacterial DNA activates the inflammasome via Aim2, J. Immunol., 185, 818, 10.4049/jimmunol.1000724
Yang, 2013, the AIM2 inflammasome is involved in macrophage activation during infection with virulent Mycobacterium bovis strain, J. Infect. Dis., 208, 1849, 10.1093/infdis/jit347
Shah, 2013, Cutting edge: Mycobacterium tuberculosis but not nonvirulent mycobacteria inhibits IFN-beta and AIM2 inflammasome-dependent IL-1beta production via its ESX-1 secretion system, J. Immunol., 191, 3514, 10.4049/jimmunol.1301331
Carlsson, 2010, Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection, PLoS Pathog., 6, e1000895, 10.1371/journal.ppat.1000895
Koo, 2008, ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection, Cell. Microbiol., 10, 1866, 10.1111/j.1462-5822.2008.01177.x
Mishra, 2010, Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome, Cell. Microbiol., 12, 1046, 10.1111/j.1462-5822.2010.01450.x
Le, 2013, Pyrin- and CARD-only proteins as regulators of NLR functions, Front. Immunol., 4, 275, 10.3389/fimmu.2013.00275
Johnston, 2005, A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection, Immunity, 23, 587, 10.1016/j.immuni.2005.10.003
Rahman, 2009, Co-regulation of NF-kappaB and inflammasome-mediated inflammatory responses by myxoma virus pyrin domain-containing protein M013, PLoS Pathog., 5, e1000635, 10.1371/journal.ppat.1000635
Gregory, 2011, Discovery of a viral NLR homolog that inhibits the inflammasome, Science, 331, 330, 10.1126/science.1199478
Ichinohe, 2010, Influenza virus activates inflammasomes via its intracellular M2 ion channel, Nat. Immunol., 11, 404, 10.1038/ni.1861
Kobayashi, 2013, The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection, Cell Host Microbe, 13, 570, 10.1016/j.chom.2013.04.012
Hajjar, 2012, Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica, PLoS Pathog., 8, e1002963, 10.1371/journal.ppat.1002963
Montminy, 2006, Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response, Nat. Immunol., 7, 1066, 10.1038/ni1386
Rebeil, 2004, Variation in lipid A structure in the pathogenic yersiniae, Mol. Microbiol., 52, 1363, 10.1111/j.1365-2958.2004.04059.x
Hammer, 1999, Co-ordination of legionella pneumophila virulence with entry into stationary phase by ppGpp, Mol. Microbiol., 33, 721, 10.1046/j.1365-2958.1999.01519.x
Iyoda, 2001, A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium, Microb. Pathog., 30, 81, 10.1006/mpat.2000.0409
Lucas, 2000, Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium, J. Bacteriol., 182, 1872, 10.1128/JB.182.7.1872-1882.2000
Cummings, 2006, In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted, Mol. Microbiol., 61, 795, 10.1111/j.1365-2958.2006.05271.x
Winter, 2010, A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella, PLoS Pathog., 6, e1001060, 10.1371/journal.ppat.1001060
Franchi, 2012, NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense, Nat. Immunol., 10.1038/ni.2263
Miao, 2010, Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria, Nat. Immunol., 11, 1136, 10.1038/ni.1960
Minnich, 2007, A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host, Adv. Exp. Med. Biol., 603, 298, 10.1007/978-0-387-72124-8_27
Chain, 2004, Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis, Proc. Natl. Acad. Sci. U. S. A., 101, 13826, 10.1073/pnas.0404012101
Perez-Lopez, 2013, Salmonella downregulates Nod-like receptor family CARD domain containing protein 4 expression to promote its survival in B cells by preventing inflammasome activation and cell death, J. Immunol., 190, 1201, 10.4049/jimmunol.1200415
Abdelaziz, 2011, Apoptosis-associated speck-like protein (ASC) controls Legionella pneumophila infection in human monocytes, J. Biol. Chem., 286, 3203, 10.1074/jbc.M110.197681
Brodsky, 2010, A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system, Cell Host Microbe, 7, 376, 10.1016/j.chom.2010.04.009
Holmstrom, 1997, YopK of Yersinia pseudotuberculosis controls translocation of Yop effectors across the eukaryotic cell membrane, Mol. Microbiol., 24, 73, 10.1046/j.1365-2958.1997.3211681.x
Kwuan, 2013, Impact of host membrane pore formation by the Yersinia pseudotuberculosis type III secretion system on the macrophage innate immune response, Infect. Immun., 81, 905, 10.1128/IAI.01014-12
Zwack, 2014, Inflammasome activation in response to the Yersinia type III secretion system requires hyperinjection of translocon proteins YopB and YopD, MBio, 2014
Collazo, 1997, The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell, Mol. Microbiol., 24, 747, 10.1046/j.1365-2958.1997.3781740.x
Francis, 1998, YopD of Yersinia pseudotuberculosis is translocated into the cytosol of HeLa epithelial cells: evidence of a structural domain necessary for translocation, Mol. Microbiol., 29, 799, 10.1046/j.1365-2958.1998.00973.x
Hersh, 1999, The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1, Proc. Natl. Acad. Sci. U. S. A., 96, 2396, 10.1073/pnas.96.5.2396
Edqvist, 2007, Minimal YopB and YopD translocator secretion by Yersinia is sufficient for Yop-effector delivery into target cells, Microbes Infect., 9, 224, 10.1016/j.micinf.2006.11.010
Dewoody, 2011, YopK regulates the Yersinia pestis type III secretion system from within host cells, Mol. Microbiol., 79, 1445, 10.1111/j.1365-2958.2011.07534.x
Thorslund, 2011, The RACK1 signaling scaffold protein selectively interacts with Yersinia pseudotuberculosis virulence function, PLoS ONE, 6, e16784, 10.1371/journal.pone.0016784
Brodsky, 2008, Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence, PLoS Pathog., 4, e1000067, 10.1371/journal.ppat.1000067
Zauberman, 2009, Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague, PLoS ONE, 4, e5938, 10.1371/journal.pone.0005938
Blander, 2012, Beyond pattern recognition: five immune checkpoints for scaling the microbial threat, Nat. Rev. Immunol., 12, 215, 10.1038/nri3167
Sander, 2011, Detection of prokaryotic mRNA signifies microbial viability and promotes immunity, Nature, 474, 385, 10.1038/nature10072
Vance, 2009, Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system, Cell Host Microbe, 6, 10, 10.1016/j.chom.2009.06.007
Chang, 2014, The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition, Proc. Natl. Acad. Sci. U. S. A., 111, 2247, 10.1073/pnas.1322269111
Arpaia, 2013, Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation, Nature, 504, 451, 10.1038/nature12726
Furusawa, 2013, Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells, Nature, 504, 446, 10.1038/nature12721
Smith, 2013, The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis, Science, 341, 569, 10.1126/science.1241165
Wynosky-Dolfi, 2014, Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome, J. Exp. Med., 211, 653, 10.1084/jem.20130627
Lawley, 2006, Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse, PLoS Pathog., 2, e11, 10.1371/journal.ppat.0020011
Fang, 2005, Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice, Infect. Immun., 73, 2547, 10.1128/IAI.73.4.2547-2549.2005
McKinney, 2000, Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase, Nature, 406, 735, 10.1038/35021074
Egan, 2014, The SPI-1-like Type III secretion system: more roles than you think, Front. Plant Sci., 5, 34, 10.3389/fpls.2014.00034
Ayres, 2012, Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota, Nat. Med., 18, 799, 10.1038/nm.2729
West, 2011, Mitochondria in innate immune responses, Nat. Rev. Immunol., 11, 389, 10.1038/nri2975