The in vivo gene expression signature of oxidative stress

Physiological Genomics - Tập 34 Số 1 - Trang 112-126 - 2008
Eun-Soo Han1, Florian L. Müller2, Viviana Pérez2, Wenbo Qi2, Huiyun Liang2, Liang Xi1, Chunxiao Fu1, Erin Doyle1, Morgen Hickey1, John E. Cornell3,4,5, Charles J. Epstein6, L. Jackson Roberts7, Holly Van Remmen3,2,5, Arlan Richardson3,2,5
1Department of Biological Science, University of Tulsa, Tulsa, Oklahoma
2Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio
3Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio
4Center for Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio
5Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas
6Department of Pediatrics, University of California, San Francisco, California
7Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee

Tóm tắt

How higher organisms respond to elevated oxidative stress in vivo is poorly understood. Therefore, we measured oxidative stress parameters and gene expression alterations (Affymetrix arrays) in the liver caused by elevated reactive oxygen species induced in vivo by diquat or by genetic ablation of the major antioxidant enzymes CuZn-superoxide dismutase ( Sod1) and glutathione peroxidase-1 ( Gpx1). Diquat (50 mg/kg) treatment resulted in a significant increase in oxidative damage within 3–6 h in wild-type mice without any lethality. In contrast, treatment of Sod1−/−or Gpx1−/−mice with a similar concentration of diquat resulted in a significant increase in oxidative damage within an hour of treatment and was lethal, i.e., these mice are extremely sensitive to the oxidative stress generated by diquat. The expression response to elevated oxidative stress in vivo does not involve an upregulation of classic antioxidant genes, although long-term oxidative stress in Sod1−/−mice leads to a significant upregulation of thiol antioxidants (e.g., Mt1, Srxn1, Gclc, Txnrd1), which appears to be mediated by the redox-sensitive transcription factor Nrf2. The main finding of our study is that the common response to elevated oxidative stress with diquat treatment in wild-type, Gpx1−/−, and Sod1−/−mice and in untreated Sod1−/−mice is an upregulation of p53 target genes ( p21, Gdf15, Plk3, Atf3, Trp53inp1, Ddit4, Gadd45a, Btg2, Ndrg1). A retrospective comparison with previous studies shows that induction of these p53 target genes is a conserved expression response to oxidative stress, in vivo and in vitro, in different species and different cells/organs.

Từ khóa


Tài liệu tham khảo

10.1111/j.1474-9728.2004.00125.x

10.1096/fj.05-5225fje

Awad JA, Burk RF, Roberts LJ 2nd.Effect of selenium deficiency and glutathione-modulating agents on diquat toxicity and lipid peroxidation in rats.J Pharmacol Exp Ther270: 858–864, 1994.

10.1073/pnas.252626999

10.1016/S0041-008X(05)80017-1

10.1152/physrev.1998.78.2.547

10.1016/0162-0134(95)00045-3

10.1210/endo-102-2-452

Bielski BH, Arudi RL, Sutherland MW.A study of the reactivity of HO2·/O2•−with unsaturated fatty acids.J Biol Chem258: 4759–4761, 1983.

10.1038/nature02075

10.1074/jbc.M307146200

10.1101/gad.1372606

10.1046/j.1474-9728.2003.00066.x

10.1152/physrev.1979.59.3.527

10.1210/endo-106-4-1103

10.2144/04376BIN02

10.1006/bbrc.2000.3930

10.1016/j.freeradbiomed.2003.12.014

10.1074/jbc.M401888200

Duttaroy A, Paul A, Kundu M, Belton A.A Sod2 null mutation confers severely reduced adult life span inDrosophila.Genetics165: 2295–2299, 2003.

10.1152/physiolgenomics.00172.2002

10.1038/sj.onc.1208207

10.1016/S1097-2765(02)00706-2

10.1080/15216540252774694

10.1093/jn/134.11.2965

10.1006/bbrc.1999.1563

10.1016/S0076-6879(02)47038-3

Halliwell B, Gutteridge J.Free Radicals in Biology and Medicine.New York: Oxford Univ. Press, 1999.

10.1093/nar/29.10.2117

10.1073/pnas.171202698

10.1093/gerona/59.4.B306

10.1093/geronj/11.3.298

Hassan HM, Fridovich I.Superoxide radical and the oxygen enhancement of the toxicity of paraquat inEscherichia coli.J Biol Chem253: 8143–8148, 1978.

10.1074/jbc.272.26.16644

10.1002/sim.4780090710

10.1038/13802

10.1038/sj.onc.1210263

Hornsby PJ.Mouse and human cells versus oxygen.Sci Aging Knowledge Environ2003: PE21, 2003.

Horvath MM, Wang X, Resnick MA, Bell DA.Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.PLoS Genet3: e127, 2007.

10.1128/MCB.20.10.3742-3751.2000

10.1006/abbi.1997.0237

10.1016/S0014-5793(02)02628-5

10.1002/mc.2940110202

10.1038/sj.onc.1204319

10.3109/01480547909016033

10.1074/jbc.M311912200

10.1074/jbc.271.47.29659

10.1074/jbc.M211898200

10.1073/pnas.93.18.9782

10.1182/blood-2002-08-2548

10.1042/BJ20060784

10.1152/ajplung.2001.281.1.L172

10.1073/pnas.98.1.31

10.1038/ng1295-376

10.1074/jbc.M410119200

10.1074/jbc.271.3.1695

10.1073/pnas.79.24.7634

McCord JM, Fridovich I.Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein).J Biol Chem244: 6049–6055, 1969.

10.1073/pnas.89.22.10721

10.1073/pnas.87.23.9383

Muller F.The nature and mechanism of superoxide production by the electron transport chain: its relevance to aging.J Amer Aging Assoc23: 227–253, 2000.

Muller FL, Mele J, Van Remmen H, Richardson A.Probing the in vivo relevance of oxidative stress in aging using knockout and transgenic mice. In:Aging at the Molecular Level, edited by Von Zglinicki T. Dordrecht, The Netherlands: Kluwer Academic, 2003, p. 131–144.

10.1038/nature01819

10.1006/excr.1994.1063

10.1016/S1097-2765(01)00284-2

10.1074/jbc.273.22.13760

10.1038/ncb1024

10.1007/978-3-642-67729-8_95

10.1093/ajcp/28.1.56

Rhodes ML, Zavala DC, Brown D.Hypoxic protection in paraquat poisoning.Lab Invest35: 496–500, 1976.

10.1038/ng1296-482

Sambrook J, Maniatis T, Fritsch EF.Extraction, purification, and analysis of mRNA from eukaryotic cells. In:Molecular Cloning: A Laboratory Manual, edited by Sambrook J, Maniatis T, and Fritsch EF. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1982, p. 196.

10.1074/jbc.M510764200

10.1073/pnas.97.10.5101

10.1128/MCB.22.7.2283-2293.2002

10.1177/096032718700600105

10.1111/j.1749-6632.2001.tb05632.x

10.1016/0014-5793(71)80168-0

10.1074/jbc.M400386200

10.1073/pnas.90.17.8013

10.1078/0171-9335-00248

10.1016/S0531-5565(01)00093-6

10.1074/jbc.M302706200

10.1093/gerona/60.7.847

Weisiger RA, Fridovich I.Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization.J Biol Chem248: 4793–4796, 1973.

10.1093/nar/gki881

10.1016/S0891-5849(99)00051-9

10.1016/S0968-0004(02)00003-8

10.1074/jbc.M104157200

10.1038/sj.emboj.7600712

10.1016/S0891-5849(02)01360-6

10.1016/j.bbrc.2005.03.189

Zhan Q, Bae I, Kastan MB, Fornace AJ Jr.The p53-dependent gamma-ray response of GADD45.Cancer Res54: 2755–2760, 1994.

Zyracka E, Zadrag R, Koziol S, Krzepilko A, Bartosz G, Bilinski T.Yeast as a biosensor for antioxidants: simple growth tests employing aSaccharomyces cerevisiaemutant defective in superoxide dismutase.Acta Biochim Pol52: 679–684, 2005.