Phân hủy sulfonamid trong các loài thực vật ngập nước làm giảm độc tính thực vật và ô nhiễm môi trường

Springer Science and Business Media LLC - Tập 29 - Trang 64972-64982 - 2022
Weifeng Ruan1,2, Jiaxi Wang1,2, Jie Huang1,2, Yiping Tai1,2, Rui Wang3, Weipeng Zhu1,2, Yang Yang1,2
1Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou, China
2Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
3College of Life Science, Sichuan Normal University, Chengdu, China

Tóm tắt

Các loài thực vật thủy sinh có thể được sử dụng để khắc phục ô nhiễm các hợp chất dược phẩm trong nước; tuy nhiên, thông tin về khả năng này cũng như rủi ro tiềm ẩn của những chất chuyển hóa được phát tán vào môi trường còn hạn chế. Nghiên cứu này xác định khả năng của Canna indica và Acorus calamus trong việc khắc phục ô nhiễm sulfonamid (SA) trong nước. Khả năng chịu đựng, loại bỏ, tích lũy và chuyển hóa sinh học của các SA khác nhau đã được điều tra trong điều kiện in vivo bằng cách cho tiếp xúc với các dung dịch SA (50 µg/L và 500 µg/L). Sau 28 ngày, C. indica loại bỏ nhiều SA hơn (89,3–97,8%) so với A. calamus (12,8–84,6%) và hệ thống không trồng cây (8,0–69,3%). Kết quả loại bỏ SA, ngoại trừ hệ thống A. calamus với 500 µg/L SA, phù hợp với mô hình động học bậc nhất. Thời gian bán hủy của tất cả các SA được ước tính từ 3–40 giờ và 2–60 giờ trong hệ thống C. indica và A. calamus, tương ứng. Sự chuyển hóa sinh học in vivo và phân hủy trong rễ là các cơ chế loại bỏ chính, chiếm 24,9–81,1% và 0,0–37,1% tổng số SA trong hệ thống C. indica và A. calamus, tương ứng. Các chất chuyển hóa acetyl của SA chỉ được phát hiện trong mô thực vật, hỗ trợ bằng chứng cho các quá trình chuyển hóa của thực vật mà không gây rủi ro cho môi trường. Quá trình chuyển hóa SA bao gồm oxy hóa, methyl hóa và liên hợp thông qua acetyl hóa có thể có lợi cho việc tích lũy và chịu đựng căng thẳng do kháng sinh. Canna indica phù hợp hơn cho việc làm sạch SA. Nghiên cứu của chúng tôi làm rõ hơn về tiềm năng và rủi ro thấp trong việc khắc phục ô nhiễm kháng sinh trong nước.

Từ khóa

#Thực vật thủy sinh #sulfonamid #khắc phục ô nhiễm #Canna indica #Acorus calamus #chuyển hóa sinh học.

Tài liệu tham khảo

A D, Zhang XM, Dai YN, Chen CX, Yang Y (2020) Occurrence and removal of quinolone, tetracycline, and macrolide antibiotics from urban wastewater in constructed wetlands. J Clean. Prod. https://doi.org/10.1016/j.jclepro.2019.119677 Bartha B, Huber C, Schroder P (2014) Uptake and metabolism of diclofenac in Typha latifolia: how plants cope with human pharmaceutical pollution. Plant Sci 227:12–20. https://doi.org/10.1016/j.plantsci.2014.06.001 Bártíková H, Skálová L, Stuchlíková L, Vokřál I, Vaněk T, Podlipná R (2015) Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment. Drug Metab Rev 47:374–387. https://doi.org/10.3109/03602532.2015.1076437 Batty LC, Baker AJM, Wheeler BD (2002) Aluminum and phosphate uptake by Phragmites australis: the role of Fe, Mn and Al root plaques. Ann Bot 89:443–449. https://doi.org/10.1007/s12520-015-0300-1 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3 Brown GM (1962) The biosynthesis of folic acid II. Inhibition by Sulfonamides J Biol Chem 237:536–540. https://doi.org/10.1007/BF00424737 Carvalho PN, Basto MCP, Almeida CMR, Brix H (2014) A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ Sci Pollut Res 21:11729–11763. https://doi.org/10.1007/s11356-014-2550-3 Charoenpong C, Peng AC (1990) Changes in β-carotene and lipid composition of sweet potatoes during storage. Special Circular - Ohio Agricultural Research and Development Center, pp 15−20 Chehrenegar B, Hu J, Ong SL (2016) Active removal of ibuprofen by money plant enhanced by ferrous ions. Chemosphere 144:91–96. https://doi.org/10.1016/j.chemosphere.2015.08.060 Chen YS, Zhang HB, Luo YM, Son J (2012) Occurrence and dissipation of veterinary antibiotics in two typical swine wastewater treatment systems in east China. Environ Monit Assess 184:2205–2217. https://doi.org/10.1007/s10661-011-2110-y Chen JF, Xu HL, Sun YB, Huang LL, Zhang PX, Zou CP, Yu B, Zhu GF, Zhao CY (2016) Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China. Sci Total Environ 543:197–205. https://doi.org/10.1016/j.scitotenv.2015.11.015 Chen J, Liu SS, He LX, Cheng YX, Ye P, Li J, Ying GG, Wang YJ, Yang F (2021) The fate of sulfonamides in the process of phytoremediation in hydroponics. Water Res. 198:117145. https://doi.org/10.1016/j.watres.2021.117145 Cui H, Schröder P (2016) Uptake, translocation and possible biodegradation of the antidiabetic agent metformin by hydroponically grown Typha latifolia. J Hazard Mater 308:355–361. https://doi.org/10.1016/j.jhazmat.2016.01.054 Datta R, Das P, Smith S, Punamiya P, Ramanathan DM, Reddy R, Sarkar D (2013) Phytoremediation potential of vetiver grass [Chrysopogon zizanioides (L.)] for tetracycline. Internat J Phytoremediat 15:343–351. https://doi.org/10.1080/15226514.2012.702803 Díaz-Cruz MS, García-Galán MJ, Barceló D (2008) Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography–quadrupole linear ion trap–mass spectrometry. J Chromatogr A 1193:50–59. https://doi.org/10.1016/j.chroma.2008.03.029 Duarte DJ, Oldenkamp R, Ragas AMJ (2019) Modelling environmental antibiotic-resistance gene abundance: A meta-analysis. Sci Total Environ 659:335–341. https://doi.org/10.1016/j.scitotenv.2018.12.233 Dudley S, Sun CL, Jiang J, Gan J (2018) Metabolism of sulfamethoxazole in Arabidopsis thaliana cells and cucumber seedlings. Environ Pollut 242:1748–1757. https://doi.org/10.1016/j.envpol.2018.07.094 Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L (2017) Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep-UK 7:1–8. https://doi.org/10.1038/srep44641 Emhofer L, Himmelsbach M, Buchberger W, Klampfl CW (2017) HPLC-MS analysis of the parent drugs and their metabolites in extracts from cress (Lepidium sativum) grown hydroponically in water containing four non-steroidal anti-inflammatory drugs. J Chromatogr A 1491:137–144. https://doi.org/10.1016/j.chroma.2017.02.057 Farkas MH, Berry JO, Aga DS (2007a) Chlortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure. Environ Sci Technol 41:1450–1456. https://doi.org/10.1021/es061651j Farkas MH, Berry JO, Aga DS (2007b) Determination of enzyme kinetics and glutathione conjugates of chlortetracycline and chloroacetanilides using liquid chromatography-mass spectrometry. Analyst 132:664–671. https://doi.org/10.1039/b700561j Forni C, Cascone A, Fiori M, Migliore L (2002) Sulphadimethoxine and Azolla filiculoides Lam.: a model for drug remediation. Water Res 36:3398–3403. https://doi.org/10.1016/s0043-1354(02)00015-5 García-Galán MJ, Diaz-Cruz MS, Barceló D (2008) Identification and determination of metabolites and degradation products of sulfonamide antibiotics. Trend. Anal. Chem. 27:1008–1022. https://doi.org/10.1016/j.trac.2008.10.001 Göbel A, Thomsen A, McArdell CS, Joss A, Giger W (2005) Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39:3981–4398. https://doi.org/10.1021/es048550a Gujarathi NP, Haney BJ, Linden JC (2005) Phytoremediation potential of Myriophyllum aquaticum and Pistia stratiotes to modify antibiotic growth promoters, tetracycline, and oxytetracycline, in aqueous wastewater systems. Internat J Phytoremediat 7:99–112. https://doi.org/10.1080/16226510590950405 Han R, Dai HP, Zhan J, Wei SH (2019) Clean extracts from accumulator efficiently improved Solanum nigrum L. accumulating Cd and Pb in soil. J Clean Prod 239:118–126. https://doi.org/10.1016/j.jclepro.2019.118055 He Y, Langenhoff AAM, Sutton NB, Rijnaarts HHM, Blokland MH, Chen F, Huber C, Schroder P (2017) Metabolism of ibuprofen by Phragmites australis: uptake and phytodegradation. Environ Sci Technol 51:4576–4584. https://doi.org/10.1021/acs.est.7b00458 Hilton MJ, Thomas KV (2003) Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A 1015:129–141. https://doi.org/10.1016/S0021-9673(03)01213-5 Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Ext Serv Circ 347:32 Li L, Yang Y, Tam NFY, Yang L, Mei X, Yang F (2013) Growth characteristics of six wetland plants and their influences on domestic wastewater treatment efficiency. Ecol Eng 60:382–392. https://doi.org/10.1016/j.ecoleng.2013.09.044 Liscombe DK, Louie GV, Noel JP (2012) Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat Prod Rep 29:1238–1250. https://doi.org/10.1039/c2np20029e Liu L, Liu YH, Liu CX, Wang Z, Dong J, Zhu GF, Huang X (2013) Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecol Eng 53:138–143. https://doi.org/10.1016/j.ecoleng.2012.12.033 Liu HP, Tang XY, Xu XM, Dai YN, Zhang XM, Yang Y (2021) Potential for phytoremediation of neonicotinoids by nine wetland plants. Chemosphere 283:131083. https://doi.org/10.1016/j.chemosphere.2021.131083 Luo J, Qi SH, Gu Sophie XW, Wang JJ, Xie XM (2016) Evaluation of the phytoremediation effect and environmental risk in remediation processes under different cultivation systems. J Clean Prod 119:25–31. https://doi.org/10.1016/j.jclepro.2016.01.043 Lv T, Zhang Y, Casas ME, Carvalho PN, Arias CA, Bester K, Brix H (2016) Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium. Chemosphere 148:459–466. https://doi.org/10.1016/j.chemosphere.2016.01.064 Macherius A, Eggen T, Lorenz W, Moeder M, Ondruschka J, Reemtsma T (2012) Metabolization of the bacteriostatic agent triclosan in edible plants and its consequences for plant uptake assessment. Environ Sci Technol 46:10797–10804. https://doi.org/10.1021/es3028378 Malchi T, Maor Y, Tadmor G, Shenker M, Chefetz B (2014) Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ Sci Technol 48:9325–9333. https://doi.org/10.1021/es5017894 Man Y, Wang JX, Tam NFY, Wan X, Huang WD, Zheng Y, Tang JP, Tao R, Yang Y (2020) Responses of rhizosphere and bulk substrate microbiome to wastewater- borne sulfonamides in constructed wetlands with different plant species. Sci Total Environ 706:1–9. https://doi.org/10.1016/j.scitotenv.2019.135955 Mathews S, Reinhold D (2013) Biosolid-borne tetracyclines and sulfonamides in plants. Environ Sci Pollut Res Int 20:4327–4338. https://doi.org/10.1007/s11356-013-1693-y Mei X, Yang Y, Tam NFY, Li L, Wang YW (2014) Roles of root porosity, radial oxygen loss, Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater. Water Res 50:147–159. https://doi.org/10.1016/j.watres.2013.12.004 Michelini L, Reichel R, Werner W, Ghisi R, Thiele-Bruhn S (2012) Sulfadiazine uptake and effects on Salix fragilis L. and Zea mays L. Plants Water Air Soil Poll 223:5243–5257. https://doi.org/10.1007/s11270-012-1275-5 Migliore L, Civitareale C, Cozzolino S, Casoria P, Brambilla G, Gaudio L (1998) Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants. Chemosphere 37:2957–2961. https://doi.org/10.1016/s0045-6535(98)00336-1 Müller E, Schüssler W, Horn H, Lemmer H (2013) Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source. Chemosphere 92:969–978. https://doi.org/10.1016/j.chemosphere.2013.02.070 Novák V, Vidovič J (2003) Transpiration and nutrient uptake dynamics in maize (Zea mays L.). Ecol Model 166:99–107. https://doi.org/10.1016/S0304-3800(03)00102-9 Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214 Reinhold D, Vishwanathan S, Park JJ, Oh D, Michael SF (2010) Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere 80:687–692. https://doi.org/10.1016/j.chemosphere.2010.05.045 Rodriguez-Hernandez MC, García De la-Cruz RF, Leyva E, Navarro-Tovar G (2017) Typha latifolia as potential phytoremediator of 2,4-dichlorophenol: Analysis of tolerance, uptake and possible transformation processes. Chemosphere 173:190–198. https://doi.org/10.1016/j.chemosphere.2016.12.043 Sun CL, Dudley S, McGinnis M, Trumble J, Gan J (2019) Acetaminophen detoxification in cucumber plants via induction of glutathione S-transferases. Sci Total Environ 649:431–439. https://doi.org/10.1016/j.scitotenv.2018.08.346 Tai YP, Tam NFY, Dai YN, Yang Y, Lin JH, Tao R, Yang YF, Wang JX, Wang R, Huang WD, Xu XD (2017) Assessment of rhizosphere processes to remove water-borne macrolide antibiotics in constructed wetlands. Plant Soil 419:489–502. https://doi.org/10.1007/s11104-017-3359-x Tai YP, Tam NFY, Ruan WF, Yang YF, Yang Y, Tao R, Zhang JF (2019) Specific metabolism related to sulfonamide tolerance and uptake in wetland plants. Chemosphere 227:496–504. https://doi.org/10.1016/j.chemosphere.2019.04.069 Van Wilder V, De Brouwer V, Loizeau K, Gambonnet B, Albrieux C, Van Der Straeten D, Ravanel S (2009) C1 metabolism and chlorophyll synthesis: the Mg-protoporphyrin IX methyltransferase activity is dependent on the folate status. New Phytol 182:137–145. https://doi.org/10.1111/j.1469-8137.2008.02707.x Xie HW, Hao HS, Xu N (2019) Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: occurrence, distribution, potential sources, and health risk assessment. Sci Total Environ 659:230–239. https://doi.org/10.1016/j.scitotenv.2018.12.222 Xu WH, Zhang G, Li XD, Zou SC, Li P, Hu ZH, Li J (2007) Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD). South China Water Res 41:4526–4534. https://doi.org/10.1016/j.watres.2007.06.023 Xu J, Zhang J, Xie H, Li C, Bao N, Zhang C, Shi Q (2010) Physiological responses of Phragmites australis to wastewater with different chemical oxygen demands. Ecol Eng 36:1341–1347. https://doi.org/10.1016/j.ecoleng.2010.06.010 Yan Y, Chen Y, Xu XG, Zhang LL, Wang GX (2019) Effects and removal of the antibiotic sulfadiazine by Eichhornia crassipes: potential use for phytoremediation. B Environ Contam Tox 103(2):342–347. https://doi.org/10.1007/s00128-019-02656-4 Yan Y, Deng Y, Li W, Du W, Gu Y, Li J, Xu X (2021) Phytoremediation of antibiotic-contaminated wastewater: Insight into the comparison of ciprofloxacin absorption, migration, and transformation process at different growth stages of E. crassipes. Chemosphere 283:131192. https://doi.org/10.1016/j.chemosphere.2021.131192 Yao X, Ling Y, Guo S, Wu W, He S, Zhang Q, Zou M, Nandakumar KS, Chen X, Liu S (2018) Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine 15:258–267. https://doi.org/10.1016/j.phymed.2018.03.018 Zarate FMJ, Schulwitz SE, Stevens KJ, Venables BJ (2012) Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland. Chemosphere 88:323–329. https://doi.org/10.1016/j.chemosphere.2012.03.005 Zhu LM, Xu HT, Xiao WS, Lu JK, Lu D, Chen XY, Zheng XY, Jeppesen E, Zhang W, Wang LQ (2020) Ecotoxicological effects of sulfonamide on and its removal by the submerged plant Vallisneria natans (Lour.) Hara. Water Res. 170:115354. https://doi.org/10.1016/j.watres.2019.115354