The improvement of the shape memory effect of Cu-13.5Al–4Ni high-temperature shape memory alloys through Cr-, Mo-, or V-alloying
Tài liệu tham khảo
San Juan, 2008, Superelasticity and shape memory in micro- and nanometer-scale pillars, Adv. Mater., 20, 272, 10.1002/adma.200701527
Miyazaki, 1989, Development of shape memory alloys, ISIJ Int., 29, 353, 10.2355/isijinternational.29.353
Dasgupta, 2014, A look into Cu-based shape memory alloys: present scenario and future prospects, J. Mater. Res., 29, 1681, 10.1557/jmr.2014.189
Mohd Jani, 2014, A review of shape memory alloy research, applications and opportunities, Mater. Des. (1980-2015), 56, 1078, 10.1016/j.matdes.2013.11.084
Ma, 2013, High temperature shape memory alloys, Int. Mater. Rev., 55, 257, 10.1179/095066010X12646898728363
Allafi, 2002, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Mater., 50, 4255, 10.1016/S1359-6454(02)00257-4
Purohit, 2017, Development of Ni-Ti shape memory alloys through novel powder metallurgy route and effect of rolling on their properties, Mater, Today Off.: Proceedings., 4, 5330
Jabur, 2013, Characterization of Ni-Ti shape memory alloys prepared by powder metallurgy, J. Alloy, Compd, 578, 136, 10.1016/j.jallcom.2013.05.029
Yang, 2020, Microstructure, martensitic transformation and shape memory effect of polycrystalline Cu-Al-Mn-Fe alloys, Sci. China Technol. Sci., 64, 400, 10.1007/s11431-020-1617-x
Yang, 2019, Excellent superelasticity and fatigue resistance of Cu-Al-Mn-W shape memory single crystal obtained only through annealing polycrystalline cast alloy, Mater. Sci. Eng., 749, 249, 10.1016/j.msea.2019.02.033
Omori, 2016, Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy, Mater. Des., 101, 263, 10.1016/j.matdes.2016.04.011
Xia, 2020, Iron-based superelastic alloys with near-constant critical stress temperature dependence, Science, 369, 855, 10.1126/science.abc1590
Kise, 2021, Orientation dependence of plasticity and fracture in single-crystal superelastic Cu-Al-Mn SMA bars, J. Mater. Civ. Eng., 33, 10.1061/(ASCE)MT.1943-5533.0003568
Kainuma, 2014, Ductile shape memory alloys of the Cu-Al-Mn system, J. Phys. IV, 5
Mirzahosseini, 2018, The effect of temperature on seismic response of Cu-Al-Mn SMA braced frame, Int. J. Civ. Eng., 16, 1687, 10.1007/s40999-018-0321-0
Asanović, 2008, A study of transformations of β-phase in Cu-Zn-Al shape memory alloys, Scripta Mater., 58, 599, 10.1016/j.scriptamat.2007.11.033
Shi, 1998, Effect of ageing in the two-phase region in a Cu-Zn-Al shape memory alloy, Mater. Sci. Eng., B, 56, 31, 10.1016/S0921-5107(98)00179-2
Mazzer, 2016, Phase transformation and shape memory effect of a Cu-Al-Ni-Mn-Nb high temperature shape memory alloy, Mater. Sci. Eng., 663, 64, 10.1016/j.msea.2016.03.017
Agrawal, 2018, Methods of fabricating Cu-Al-Ni shape memory alloys, J. Alloys Compd., 750, 235, 10.1016/j.jallcom.2018.03.390
Pereira, 2016, Reversible martensite transformations in thermal cycled polycrystalline Cu-13.7%Al-4.0%Ni alloy, J. Alloys Compd., 688, 436, 10.1016/j.jallcom.2016.07.210
Lelatko, 2001, High temperature Cu-Al-Nb - based shape memory alloys, J. Phys. IV, 11, 487
Wang, 2014, A new type of Cu-Al-Ta shape memory alloy with high martensitic transformation temperature, Smart Mater. Struct., 23, 10.1088/0964-1726/23/2/025018
Saud, 2014, Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu-Al-Ni shape memory alloys, J. Therm. Anal. Calorim., 118, 111, 10.1007/s10973-014-3953-6
Zárubová, 2010, In situ TEM observation of stress-induced martensitic transformations and twinning processes in CuAlNi single crystals, Acta Mater., 58, 5109, 10.1016/j.actamat.2010.05.046
Zhang, 2016, Effects of Gd addition on the microstructure, mechanical properties and shape memory effect of polycrystalline Cu-Al-Ni shape memory alloy, Mater. Lett., 180, 223, 10.1016/j.matlet.2016.05.149
Gera, 2020, Comparison of Cu-Al-Ni-Mn-Zr shape memory alloy prepared by selective laser melting and conventional powder metallurgy, Trans. Nonferrous Metals Soc. China, 30, 3322, 10.1016/S1003-6326(20)65464-4
Zhang, 2021, Effect of Nd addition on the microstructure, mechanical properties, shape memory effect and corrosion behaviour of Cu-Al-Ni high-temperature shape memory alloys, J. Alloys Compd., 858, 10.1016/j.jallcom.2020.157685
Saud, 2014, Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys, J. Mater. Eng. Perform., 23, 3620, 10.1007/s11665-014-1134-1
Yang, 2017, Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys, Mater. Des., 115, 17, 10.1016/j.matdes.2016.11.035
Yang, 2019, Low-cost Cu-based shape memory single crystals obtained by abnormal grain growth showing excellent superelasticity, Materialia, 5, 10.1016/j.mtla.2018.100200
Yang, 2019, Excellent superelasticity of Cu-Al-Mn-Cr shape memory single crystal obtained only through annealing cast polycrystalline alloy, Scripta Mater., 165, 20, 10.1016/j.scriptamat.2019.02.011
Nó, 2010, Quantitative analysis of stress-induced martensites by in situ transmission electron microscopy superelastic tests in Cu-Al-Ni shape memory alloys, Acta Mater., 58, 6181, 10.1016/j.actamat.2010.07.038
Yang, 2016, A jumping shape memory alloy under heat, Sci. Rep., 6
Zhang, 2016, Influence of alloying element addition on Cu-Al-Ni High-Temperature shape memory alloy without second phase formation, Acta Metall. Sin., 29, 884, 10.1007/s40195-016-0467-1
Zhang, 2018, Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys, Acta Phys. Austriaca, 124
Zhang, 2018, Microstructure mechanical properties and shape memory effect of Cu-Hf-Al-Ni alloys, Mater. Sci. Technol., 34, 1497, 10.1080/02670836.2018.1462299