The improvement of the shape memory effect of Cu-13.5Al–4Ni high-temperature shape memory alloys through Cr-, Mo-, or V-alloying

Lipeng Guo1,2, Feng Chen1,2, Shuaishuai Chen1,2, Yixiong Huang2, Jinbin Zhang1,2, Cuiping Wang2, Shuiyuan Yang1,2
1College of Materials of Xiamen University, Xiamen 361005, Shenzhen Research Institute of Xiamen University, Shenzhen 518055, China
2Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen 361005, China

Tài liệu tham khảo

San Juan, 2008, Superelasticity and shape memory in micro- and nanometer-scale pillars, Adv. Mater., 20, 272, 10.1002/adma.200701527 Miyazaki, 1989, Development of shape memory alloys, ISIJ Int., 29, 353, 10.2355/isijinternational.29.353 Dasgupta, 2014, A look into Cu-based shape memory alloys: present scenario and future prospects, J. Mater. Res., 29, 1681, 10.1557/jmr.2014.189 Mohd Jani, 2014, A review of shape memory alloy research, applications and opportunities, Mater. Des. (1980-2015), 56, 1078, 10.1016/j.matdes.2013.11.084 Ma, 2013, High temperature shape memory alloys, Int. Mater. Rev., 55, 257, 10.1179/095066010X12646898728363 Allafi, 2002, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Mater., 50, 4255, 10.1016/S1359-6454(02)00257-4 Purohit, 2017, Development of Ni-Ti shape memory alloys through novel powder metallurgy route and effect of rolling on their properties, Mater, Today Off.: Proceedings., 4, 5330 Jabur, 2013, Characterization of Ni-Ti shape memory alloys prepared by powder metallurgy, J. Alloy, Compd, 578, 136, 10.1016/j.jallcom.2013.05.029 Yang, 2020, Microstructure, martensitic transformation and shape memory effect of polycrystalline Cu-Al-Mn-Fe alloys, Sci. China Technol. Sci., 64, 400, 10.1007/s11431-020-1617-x Yang, 2019, Excellent superelasticity and fatigue resistance of Cu-Al-Mn-W shape memory single crystal obtained only through annealing polycrystalline cast alloy, Mater. Sci. Eng., 749, 249, 10.1016/j.msea.2019.02.033 Omori, 2016, Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy, Mater. Des., 101, 263, 10.1016/j.matdes.2016.04.011 Xia, 2020, Iron-based superelastic alloys with near-constant critical stress temperature dependence, Science, 369, 855, 10.1126/science.abc1590 Kise, 2021, Orientation dependence of plasticity and fracture in single-crystal superelastic Cu-Al-Mn SMA bars, J. Mater. Civ. Eng., 33, 10.1061/(ASCE)MT.1943-5533.0003568 Kainuma, 2014, Ductile shape memory alloys of the Cu-Al-Mn system, J. Phys. IV, 5 Mirzahosseini, 2018, The effect of temperature on seismic response of Cu-Al-Mn SMA braced frame, Int. J. Civ. Eng., 16, 1687, 10.1007/s40999-018-0321-0 Asanović, 2008, A study of transformations of β-phase in Cu-Zn-Al shape memory alloys, Scripta Mater., 58, 599, 10.1016/j.scriptamat.2007.11.033 Shi, 1998, Effect of ageing in the two-phase region in a Cu-Zn-Al shape memory alloy, Mater. Sci. Eng., B, 56, 31, 10.1016/S0921-5107(98)00179-2 Mazzer, 2016, Phase transformation and shape memory effect of a Cu-Al-Ni-Mn-Nb high temperature shape memory alloy, Mater. Sci. Eng., 663, 64, 10.1016/j.msea.2016.03.017 Agrawal, 2018, Methods of fabricating Cu-Al-Ni shape memory alloys, J. Alloys Compd., 750, 235, 10.1016/j.jallcom.2018.03.390 Pereira, 2016, Reversible martensite transformations in thermal cycled polycrystalline Cu-13.7%Al-4.0%Ni alloy, J. Alloys Compd., 688, 436, 10.1016/j.jallcom.2016.07.210 Lelatko, 2001, High temperature Cu-Al-Nb - based shape memory alloys, J. Phys. IV, 11, 487 Wang, 2014, A new type of Cu-Al-Ta shape memory alloy with high martensitic transformation temperature, Smart Mater. Struct., 23, 10.1088/0964-1726/23/2/025018 Saud, 2014, Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu-Al-Ni shape memory alloys, J. Therm. Anal. Calorim., 118, 111, 10.1007/s10973-014-3953-6 Zárubová, 2010, In situ TEM observation of stress-induced martensitic transformations and twinning processes in CuAlNi single crystals, Acta Mater., 58, 5109, 10.1016/j.actamat.2010.05.046 Zhang, 2016, Effects of Gd addition on the microstructure, mechanical properties and shape memory effect of polycrystalline Cu-Al-Ni shape memory alloy, Mater. Lett., 180, 223, 10.1016/j.matlet.2016.05.149 Gera, 2020, Comparison of Cu-Al-Ni-Mn-Zr shape memory alloy prepared by selective laser melting and conventional powder metallurgy, Trans. Nonferrous Metals Soc. China, 30, 3322, 10.1016/S1003-6326(20)65464-4 Zhang, 2021, Effect of Nd addition on the microstructure, mechanical properties, shape memory effect and corrosion behaviour of Cu-Al-Ni high-temperature shape memory alloys, J. Alloys Compd., 858, 10.1016/j.jallcom.2020.157685 Saud, 2014, Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys, J. Mater. Eng. Perform., 23, 3620, 10.1007/s11665-014-1134-1 Yang, 2017, Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys, Mater. Des., 115, 17, 10.1016/j.matdes.2016.11.035 Yang, 2019, Low-cost Cu-based shape memory single crystals obtained by abnormal grain growth showing excellent superelasticity, Materialia, 5, 10.1016/j.mtla.2018.100200 Yang, 2019, Excellent superelasticity of Cu-Al-Mn-Cr shape memory single crystal obtained only through annealing cast polycrystalline alloy, Scripta Mater., 165, 20, 10.1016/j.scriptamat.2019.02.011 Nó, 2010, Quantitative analysis of stress-induced martensites by in situ transmission electron microscopy superelastic tests in Cu-Al-Ni shape memory alloys, Acta Mater., 58, 6181, 10.1016/j.actamat.2010.07.038 Yang, 2016, A jumping shape memory alloy under heat, Sci. Rep., 6 Zhang, 2016, Influence of alloying element addition on Cu-Al-Ni High-Temperature shape memory alloy without second phase formation, Acta Metall. Sin., 29, 884, 10.1007/s40195-016-0467-1 Zhang, 2018, Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys, Acta Phys. Austriaca, 124 Zhang, 2018, Microstructure mechanical properties and shape memory effect of Cu-Hf-Al-Ni alloys, Mater. Sci. Technol., 34, 1497, 10.1080/02670836.2018.1462299