The impairment of intramural periarterial drainage in brain after subarachnoid hemorrhage

Acta Neuropathologica Communications - Tập 10 - Trang 1-18 - 2022
Yanrong Sun1, E. Liu1,2, Yanhong Pei1, Qinhan Yao1, Haowen Ma1, Yakun Mu1, Yingjie Wang1, Yan Zhang1, Xiaomei Yang1, Xing Wang3, Jiajia Xue3, Jiliang Zhai4, Roxana O. Carare5,6, Lihua Qin1, Junhao Yan1,7
1Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
2Department of Anatomy, School of Medicine, Shandong University, Jinan, China
3State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
4Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
5Faculty of Medicine, UK Southampton General Hospital, University of Southampton, Southampton, UK
6University of Medicine, Pharmacy, Science and Technology “G.E. Palade”, Targu Mures, Romania
7Beijing Key Lab of Magnetic Resonance Imaging Technology, Peking University Third Hospital, Beijing, China

Tóm tắt

Interstitial fluid (ISF) from brain drains along the basement membranes of capillaries and arteries as Intramural Periarterial Drainage (IPAD); failure of IPAD results in cerebral amyloid angiopathy (CAA). In this study, we test the hypothesis that IPAD fails after subarachnoid haemorrhage (SAH). The rat SAH model was established using endovascular perforation method. Fluorescence dyes with various molecular weights were injected into cisterna magna of rats, and the pattern of IPAD after SAH was detected using immunofluorescence staining, two-photon fluorescent microscope, transmission electron microscope and magnetic resonance imaging tracking techniques. Our results showed that fluorescence dyes entered the brain along a periarterial compartment and were cleared from brain along the basement membranes of the capillaries, with different patterns based on individual molecular weights. After SAH, there was significant impairment in the IPAD system: marked expansion of perivascular spaces, and ISF clearance rate was significantly decreased, associated with the apoptosis of endothelial cells, activation of astrocytes, over-expression of matrix metalloproteinase 9 and loss of collagen type IV. In conclusion, experimental SAH leads to a failure of IPAD, clinically significant for long term complications such as CAA, following SAH.

Tài liệu tham khảo

Agarwal N, Carare RO (2020) Cerebral vessels: an overview of anatomy, physiology, and role in the drainage of fluids and solutes. Front Neurol 11:611485. https://doi.org/10.3389/fneur.2020.611485 Albargothy NJ, Johnston DA, MacGregor-Sharp M, Weller RO, Verma A, Hawkes CA et al (2018) Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol 136:139–152. https://doi.org/10.1007/s00401-018-1862-7 Aldea R, Weller RO, Wilcock DM, Carare RO, Richardson G (2019) Cerebrovascular smooth muscle cells as the drivers of intramural periarterial drainage of the brain. Front Aging Neurosci 11:1. https://doi.org/10.3389/fnagi.2019.00001 Amar S, Smith L, Fields GB (2017) Matrix metalloproteinase collagenolysis in health and disease. Biochim Biophys Acta Mol Cell Res 1864:1940–1951. https://doi.org/10.1016/j.bbamcr.2017.04.015 Banerjee G, Kim HJ, Fox Z, Jäger HR, Wilson D, Charidimou A et al (2017) MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden. Brain 140:1107–1116. https://doi.org/10.1093/brain/awx003 Barisano G, Lynch KM, Sibilia F, Lan H, Shih NC, Sepehrband F et al (2022) Imaging perivascular space structure and function using brain MRI. Neuroimage 257:119329. https://doi.org/10.1016/j.neuroimage.2022.119329 Cai Y, Xu T, Lu C, Ma Y, Chang D, Zhang Y et al (2021) Endogenous regulatory T cells promote M2 macrophage phenotype in diabetic stroke as visualized by optical imaging. Transl Stroke Res 12:136–146. https://doi.org/10.1007/s12975-020-00808-x Carare RO, Aldea R, Agarwal N, Bacskai BJ, Bechman I, Boche D et al (2020) Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of vascular professional interest area (PIA): Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer’s disease-Opportunities for Therapy. Alzheimer’s Dement (Amst Neth) 12:e12053. https://doi.org/10.1002/dad2.12053 Carare RO, Aldea R, Bulters D, Alzetani A, Birch AA, Richardson G et al (2020) Vasomotion drives periarterial drainage of Aβ from the brain. Neuron 105:400–401. https://doi.org/10.1016/j.neuron.2020.01.011 Engelhardt B, Vajkoczy P, Weller RO (2017) The movers and shapers in immune privilege of the CNS. Nat Immunol 18:123–131. https://doi.org/10.1038/ni.3666 Frost M, Keable A, Baseley D, Sealy A, Andreea Zbarcea D, Gatherer M et al (2020) Vascular α1A adrenergic receptors as a potential therapeutic target for IPAD in Alzheimer’s disease. Pharmaceuticals (Basel). https://doi.org/10.3390/ph13090261 Gouveia-Freitas K, Bastos-Leite AJ (2021) Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology. Neuroradiology 63:1581–1597. https://doi.org/10.1007/s00234-021-02718-7 Grüter BE, Croci D, Schöpf S, Nevzati E, d’Allonzo D, Lattmann J et al (2020) Systematic review and meta-analysis of methodological quality in in vivo animal studies of subarachnoid hemorrhage. Transl Stroke Res 11:1175–1184. https://doi.org/10.1007/s12975-020-00801-4 Han H, Shi C, Fu Y, Zuo L, Lee K, He Q et al (2014) A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain. IEEE J Biomed Health Inform 18:978–983. https://doi.org/10.1109/jbhi.2014.2308279 Hatayama K, Riddick S, Awa F, Chen X, Virgintino D, Stonestreet BS (2022) Time course of changes in the neurovascular unit after hypoxic-ischemic injury in neonatal rats. Int J Mol Sci. https://doi.org/10.3390/ijms23084180 Hawkes CA, Härtig W, Kacza J, Schliebs R, Weller RO, Nicoll JA et al (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121:431–443. https://doi.org/10.1007/s00401-011-0801-7 Khomiak D, Kaczmarek L (2018) Matrix metalloproteinase 9 and epileptogenesis - the crucial role of the enzyme and strategies to prevent the disease development. Postepy Biochem 64:222–230. https://doi.org/10.18388/pb.2018_134 Lei Y, Han H, Yuan F, Javeed A, Zhao Y (2017) The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol 157:230–246. https://doi.org/10.1016/j.pneurobio.2015.12.007 Li Y, Han H, Shi K, Cui D, Yang J, Alberts IL et al (2020) The mechanism of downregulated interstitial fluid drainage following neuronal excitation. Aging Dis 11:1407–1422. https://doi.org/10.14336/ad.2020.0224 Liu E, Peng X, Ma H, Zhang Y, Yang X, Zhang Y et al (2020) The involvement of aquaporin-4 in the interstitial fluid drainage impairment following subarachnoid hemorrhage. Front Aging Neurosci 12:611494. https://doi.org/10.3389/fnagi.2020.611494 Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. https://doi.org/10.1038/nature14432 Lv D, Li J, Li H, Fu Y, Wang W (2017) Imaging and quantitative analysis of the interstitial space in the caudate nucleus in a rotenone-induced rat model of Parkinson’s disease using tracer-based MRI. Aging Dis 8:1–6. https://doi.org/10.14336/ad.2016.0625 Moore MC, Pandolfi V, McFetridge PS (2015) Novel human-derived extracellular matrix induces in vitro and in vivo vascularization and inhibits fibrosis. Biomaterials 49:37–46. https://doi.org/10.1016/j.biomaterials.2015.01.022 Phillips TM, Fadia M, Lea-Henry TN, Smiles J, Walters GD, Jiang SH (2017) MMP2 and MMP9 associate with crescentic glomerulonephritis. Clin Kidney J 10:215–220. https://doi.org/10.1093/ckj/sfw111 Teng Z, Wang A, Wang P, Wang R, Wang W, Han H (2018) The effect of aquaporin-4 knockout on interstitial fluid flow and the structure of the extracellular space in the deep brain. Aging Dis 9:808–816. https://doi.org/10.14336/ad.2017.1115 Turner RJ, Sharp FR (2016) Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 10:56. https://doi.org/10.3389/fncel.2016.00056 Vafadari B, Salamian A, Kaczmarek L (2016) MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem 139(Suppl 2):91–114. https://doi.org/10.1111/jnc.13415 Vallejo J, Dunér P, To F, Engelbertsen D, Gonçalves I, Nilsson J et al (2019) Activation of immune responses against the basement membrane component collagen type IV does not affect the development of atherosclerosis in ApoE-deficient mice. Sci Rep 9:5964. https://doi.org/10.1038/s41598-019-42375-8 van Lieshout JH, Marbacher S, Muhammad S, Boogaarts HD, Bartels R, Dibué M et al (2020) Proposed definition of experimental secondary ischemia for mouse subarachnoid hemorrhage. Transl Stroke Res 11:1165–1170. https://doi.org/10.1007/s12975-020-00796-y Wang H, Zhu Y, Zhao M, Wu C, Zhang P, Tang L et al (2013) miRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targeting integrin β1 and matrix metalloproteinase2 (MMP2). PLoS ONE 8:e70192. https://doi.org/10.1371/journal.pone.0070192 Wang L, Zhang Y, Zhao Y, Marshall C, Wu T, Xiao M (2019) Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice. Brain Pathol 29:176–192. https://doi.org/10.1111/bpa.12656 Wang R, Han H, Shi K, Alberts IL, Rominger A, Yang C et al (2021) The alteration of brain interstitial fluid drainage with myelination development. Aging Dis 12:1729–1740. https://doi.org/10.14336/ad.2021.0305 Weekman EM, Wilcock DM (2016) Matrix metalloproteinase in blood-brain barrier breakdown in dementia. J Alzheimers Dis 49:893–903. https://doi.org/10.3233/jad-150759 Wojtas AM, Kang SS, Olley BM, Gatherer M, Shinohara M, Lozano PA et al (2017) Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc Natl Acad Sci USA 114:E6962–E6971. https://doi.org/10.1073/pnas.1701137114 Xiong L, Sun L, Zhang Y, Peng J, Yan J, Liu X (2020) Exosomes from bone marrow mesenchymal stem cells can alleviate early brain injury after subarachnoid hemorrhage through miRNA129-5p-HMGB1 pathway. Stem Cells Dev 29:212–221. https://doi.org/10.1089/scd.2019.0206 Yan J, Chen C, Hu Q, Yang X, Lei J, Yang L et al (2008) The role of p53 in brain edema after 24 h of experimental subarachnoid hemorrhage in a rat model. Exp Neurol 214:37–46. https://doi.org/10.1016/j.expneurol.2008.07.006 Yang Q, Sun Y, Wang W, Jia J, Bai W, Wang K et al (2021) Transient receptor potential melastatin 2 thermosensitive neurons in the preoptic area involved in menopausal hot flashes in ovariectomized mice. Neuroendocrinology. https://doi.org/10.1159/000519949 Yang Y, Zhang K, Yin X, Lei X, Chen X, Wang J et al (2020) Quantitative iron neuroimaging can be used to assess the effects of minocycline in an intracerebral hemorrhage minipig model. Transl Stroke Res 11:503–516. https://doi.org/10.1007/s12975-019-00739-2