The impacts of climate change factors and innovative capabilities on food production in Algeria: evidence from ARDL model

Mohammed Bouznit1, Rachida Aïssaoui2
1Laboratoire Economie et Développement, Université de Bejaia, Bejaïa, Algeria
2College of Business, Ohio University, Athens, USA

Tóm tắt

The Paris Agreement stands as a landmark in global economies’ commitment to accelerate their sustainable transition and promote food security. Efforts to mitigate and adapt to climate change are high on the agenda of both policymakers and researchers who increasingly acknowledge the criticality of innovative measures to support those efforts. However, it is still unclear how climate change factors and innovative capabilities affect food production in the long run, especially for developing countries, which are most threatened by climate change. Using an autoregressive distributed lag (ARDL) cointegration approach, this study evaluates the long-run effects of climate change and innovative capabilities on food production in Algeria over the period 1970–2019. To do so, food production is posited as a function of a set of climate change variables (CO2 emissions, mean temperatures, and mean precipitations) and innovative capabilities (human and physical capital). The novelty of this approach helps to tease out the distinct effects of these factors on food production, both in the long run and the short run. The results not only support the presence of long-run relationships between the variables but also show that, while precipitations, human capital, and physical capital positively affect food production, temperatures have a negative relationship with food production. Moreover, CO2 emissions do not appear to have a long-run effect on food production, at least not directly. In the short run, results confirm that food production is positively related to precipitation and stock of physical capital. Results from this study thus suggest that mitigating climate change impacts and ensuring food security, especially in developing countries, will require investments in agricultural innovation.

Tài liệu tham khảo

Attari, M. I. J., Hussain, M., & Javid, A. Y. (2016). Carbon emissions and industrial growth: An ARDL analysis for Pakistan. International Journal of Energy Sector Management, 10(4), 642–658. https://doi.org/10.1108/IJESM-04-2014-0002 Benzerga, M. (2015). Heat waves are on the rise in Algeria due to climate change, says specialist. The Guardian. Last Retrieved 30 June, 2023, https://www.theguardian.com/environment/2015/aug/24/algeria-to-experience-more-heat-waves-due-to-climate-change-says-specialist Bessaoud, O. (2019). Rapport de synthèse sur l’agriculture en Algérie. https://hal.archives-ouvertes.fr/hal-02137632/document Bouznit, M., Elaguab, M., Selt, M. M., Himrane, M., & Aïssaoui, R. (2022). Climate change and agricultural production in Algeria. In W. LealFilho & E. Manolas (Eds.), Climate change in the Mediterranean and middle eastern region (pp. 249–268). Springer. https://doi.org/10.1007/978-3-030-78566-6 Bouznit, M., Ferfera, M. Y., & Pablo-Romero, M. (2015). The slow economic growth in Algeria: A comparative study with respect to South Korea. African Development Review, 27(4), 377–391. https://doi.org/10.1111/1467-8268.12154 Bouznit, M., & Pablo-Romero, M. (2016). Co2 emission and economic growth in Algeria. Energy Policy, 96, 93–104. https://doi.org/10.1016/j.enpol.2016.05.036 Bouznit, M., Pablo-Romero, M., & Sánchez-Braza, A. (2018). Residential electricity consumption and economic growth in Algeria. Energies, 11, 1656. https://doi.org/10.3390/en11071656 Bouznit, M., Pablo-Romero, M., & Sánchez-Braza, A. (2023). Economic growth, human capital, and energy consumption in Algeria: Evidence from cointegrating polynomial regression and a simultaneous equations model. Environmental Science and Pollution Research, 30, 23450–23466. https://doi.org/10.1007/s11356-022-23657-7 Ceesay, E. K., Francis, P. C., Jawneh, S., Njie, M., Belford, C., & Fanneh, M. M. (2021). Climate change, growth in agriculture value-added, food availability and economic growth nexus in the Gambia: A Granger causality and ARDL modeling approach. SN Business & Economics. https://doi.org/10.1007/s43546-021-00100-6 Ceesay, E. K., & Ndiaye, M. B. O. (2022). Climate change, food security and economic growth nexus in the Gambia: Evidence from an econometrics analysis. Research in Globalization, 5, 100089. https://doi.org/10.1016/j.resglo.2022.100089 Chabane, M. (2012). Comment concilier changement climatique et développement agricole en Algérie? Territoire En Mouvement. https://doi.org/10.4000/tem.1754 Chen, E. K. Y. (1997). The total factor productivity debate: Determinants of economic growth in East Asia. Asian-Pacific Economic Literature, 11, 18–38. https://doi.org/10.1111/1467-8411.00002 Clark, S. (2022). Organic farming and climate change: The need for innovation. Sustainability, 12(17), 7012. https://doi.org/10.3390/su12177012 CNP-Algeria (2019). National climate plan of Algeria. Last Retrieved 30 June, 2023. https://www.me.gov.dz/telechargement/plan-national-climat/ COP21 (2015). The Paris Agreement. Last Retrieved 30 June, 2023. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement Dawadi, B., Shrestha, A., Acharya, R. H., Dhital, Y. P., & Devkota, R. (2022). Impact of climate change on agricultural production: A case of Rasuwa District, Nepal. Regional Sustainability, 3, 122–132. https://doi.org/10.1016/j.regsus.2022.07.002 Dell, M., Jones Benjamin, F., & Olken, B.A. (2008). Climate Change and Economic Growth: Evidence from the Last Half Century. Working Paper 14132. National Bureau of Economic Research. Cambridge, MA 02138. Last Retrieved 30 June, 2023. https://www.nber.org/system/files/working_papers/w14132/w14132.pdf Donkor, F. K., Howarth, C., Ebhuoma, E., Daly, M., Vaughan, C., Pretorius, L., Mambo, J., MacLeod, D., Kythreotis, A., Jones, L., Grainger, S., Golding, N., & Anderson, J. A. (2019). Climate services for development: The role of early career researchers in advancing the debate. Environmental Communication, 13(5), 561–566. https://doi.org/10.1080/17524032.2019.1596145 Dowling, M., & Summers, P. M. (1998). Total factors productivity and economic growth: Issues for Asia. The Economic Record, 74(225), 170–185. https://doi.org/10.1111/j.1475-4932.1998.tb01915.x Emediegwu, L. E., Wossink, A., & Hall, A. (2022). The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach. World Development, 158, 105967. https://doi.org/10.1016/j.worlddev.2022.105967 Engel, R. F., & Granger, C. W. J. (1987). Cointegration and error correction: Representation, estimation, and testing. Econometrica, 55(2), 251–276. https://doi.org/10.2307/1913236 Filho, W. L., Setti, A. F. F., Azeiteiro, U. M., Lokupitiya, E., Donkor, F. K., Etim, N. N. A., Mantandirotya, N., Olooto, F. M., Sharifi, A., Nagy, G. J., & Djekic, I. (2022). An overview of the interaction between food production and climate change. Sciences of the Total Environment, 838, 156438. https://doi.org/10.1016/j.scitotenv.2022.156438 Guo, H., Xia, Y., Jin, J., & Pan, C. (2022). The impact of climate change on the efficiency of agricultural production in the world’s main agricultural regions. Environmental Impact Assessment Review, 97, 106891. https://doi.org/10.1016/j.eiar.2022.106891 Gyimah-Brempong, K., & De-Camacho, S. M. (1998). Political instability, human capital and economic growth in Latin America. The Journal of Developing Areas, 32(4), 449–466. Hanushek, E. A., & Woesmann, L. (2012). Do better school lead to more growth? Cognitive skills, economic outcomes, and causation. Journal of Economic Growth, 17, 267–321. https://doi.org/10.1007/s10887-012-9081-x Henry, R. J. (2020). Innovations in plant genetics adapting agriculture to climate change. Current Opinion in Plant Biology, 56, 168–173. https://doi.org/10.1016/j.pbi.2019.11.004 Hye, Q. M., & Jafri, Z. (2011). Trade, human capital and agricultural sector growth of Pakistan. African Journal of Agricultural Research, 6(27), 5999–6007. Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vectors autoregressive models. Econometrica, 59(6), 1551–1580. https://doi.org/10.2307/2938278 Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Clinical Practice Endocrinology & Metabolism, 12, 518–527. https://doi.org/10.1038/s41558-022-01377-7 Kruss, G., McGrath, S., Petersen, I., & Gastrow, M. (2015). Higher education and economic development: The importance of building technological capabilities. International Journal of Educational Development, 43, 22–31. https://doi.org/10.1016/j.ijedudev.2015.04.011 Lobell, D. B., & Burke M. B. (2008). Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environmental Research Letters, 3(3), 03400. https://doi.org/10.1088/1748-9326/3/3/034007 Lucas, R. E. (1988). On the mechanics of economic development. Journal of Monetary Economics, 22(2), 3–42. https://doi.org/10.1016/0304-3932(88)90168-7 Lucas, R. E. (1990). Why doesn’t capital flow from rich to poor countries? The American Economic Review, 80(2), 92–96. Mu, J. E., Sleeter, B. M., & Abatzoglou, J. T. (2017). Climate impacts on agricultural land use in the USA: The role of socioeconomic scenarios. Climate Change, 144, 329–345. https://doi.org/10.1007/s10584-017-2033-x Mulatu, D.W., Eshete, Z.S., & Gatiso, T.G. (2016). The impact of CO2 emissions on agricultural productivity and household welfare in Ethiopia: A computable general equilibrium analysis. Environment for Development Initiative. http://www.jstor.com/stable/resrep15044 Ndunagu, J. N., Ukhurebor, K. E., Akaaza, M., & Onyancha, R. B. (2022). Development of a wireless sensor network and IoT-based smart irrigation system. Applied and Environmental Soil Science. https://doi.org/10.1155/2022/7678570 Nelson, R., & Phelps, E. S. (1966). Investment in humans, technological diffusion, and economic growth. American Economic Association Papers and Proceedings, 56(1–2), 69–75. Nkoro, E., & Uko, A. K. (2016). Autoregressive Distributed Lag (ARDL) cointegration technique: Application and interpretation. Journal of Statistical and Econometric Methods, 5(4), 63–91. Nwankwo, W., & Ukhurebor, K. E. (2021). Big data analytics: A single window IoT-enabled climate variability system for all-year-round vegetable cultivation. IOP Conference Series: Earth and Environmental Science, 655, 012030. https://doi.org/10.1088/1755-1315/655/1/012030 Osabien, R., Osabuobien, E., & Urbie, E. (2018). Food security, institutional framework and technology: Examining the nexus in Nigeria using ARDL approach. Current Nutrition & Food Science, 14(2), 154–163. https://doi.org/10.2174/1573401313666170525133853 Pablo-Romero, M. P., & Gómez-Calero, M. (2013). A Translog production function for the Spanish provinces: Impact of the human and physical capital in economic growth. Economic Modelling, 32, 77–87. https://doi.org/10.1016/j.econmod.2013.01.040 Pablo-Romero, M. P., Sánchez-Braza, A., & Bouznit, M. (2016). The different contribution of productive factors to economic growth in MENA countries. African and Asian Studies, 15, 127–145. https://doi.org/10.1163/15692108-12341360 Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16, 289–326. https://doi.org/10.1002/jae.616 Romer, P. M. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94(5), 1002–1037. Romer, P. M. (1990). Endogenous technological change. The Journal of Political Economy, 98(5), S71–S102. Sahnoune, F., Belhamel, M., Zelmat, M., & Kerbachi, R. (2013). Climate change in Algeria: Vulnerability and strategy of mitigation and adaptation. Energy Procedia, 36, 1286–1294. https://doi.org/10.1016/j.egypro.2013.07.145 Saidoun, R., Hammou, S. A., & Chehat, F. (2022). La politique agricole et rurale en Algérie: De la centralisation à la gouvernance. Les Cahiers Du Cread, 38(3), 473–506. https://doi.org/10.4314/cread.v38i3.17 Siloko, I. U., Ukhurebor, K. E., Siloko, E. A., Enoyoze, E., Bodadoye, A. O., Ishikewene, C. C., Uddin, O. O., & Nwankwo, W. (2021). Effects of some meteorological variables on cassava production in Edo State, Nigeria, via density estimation. Scientific African, 13, e00852. Smith, P., & Gregory, P. J. (2013). Climate change and sustainable food production. Proceedings of the Nutrition Society, 72, 21–28. https://doi.org/10.1017/S0029665112002832 Solow, R. M. (1956). A contribution to the theory of economic growth. The Quarterly Journal of Economics, 70(1), 65–94. https://doi.org/10.2307/1884513 Stern, N. (2006). The Economics of Climate Change. Cambridge University Press. https://doi.org/10.1017/CBO9780511817434 Ukhurebor, K.E. (2020). The role of biosensor in climate smart organic agriculture toward agricultural and environmental sustainability. In Meena, R.S. (Ed.), Agrometerolgy, Chapter 8. https://doi.org/10.5772/intechopen.93150 Ukhurebor, K. E., & Adetunji, C. O. (2021). Relevance of biosensor in climate smart organic agriculture and their role in environmental sustainability: What has been done and what we need to do? In R. N. Pudake, U. Jain, & C. Kole (Eds.), Biosensors in agriculture: Recent trends and future perspectives, concepts and strategies in plant sciences. Springer. https://doi.org/10.1007/978-3-030-66165-6_7 Ukhurebor, K. E., Adetunji, C. O., Olugbemi, O. T., & Hefft, D. I. (2022b). Climate condition monitoring and automated systems. In A. Abraham, S. Dash, J. J. P. C. Rodrigues, B. Acharya, & S. K. Pani (Eds.), AI, Edge and IoT-based smart agriculture (pp. 437–447). Academic Press. https://doi.org/10.1016/B978-0-12-823694-9.00031-1 Ukhurebor, K. E., Aigbe, U. O., Onyancha, R. B., Ndunagu, J. N., Osibote, O. A., Emegha, J. O., Balogun, V. A., Kusuma, H. S., & Darmokoesoemo, H. (2022a). An overview of the emergence and challenges of land reclamation: Issues and prospect. Applied and Environmental Soil Science. https://doi.org/10.1155/2022/5889823 Ukhurebor, K. E., Mishra, P., Mishra, R. R., & Adetunji, C. O. (2020). Nexus between climate change and food innovation technology: Recent advances. In P. Mishra, R. R. Mishra, & C. O. Adetunji (Eds.), Innovations in food technology. Springer. https://doi.org/10.1007/978-981-15-6121-4_20 United Nations (2023). The 17 Goals. Department of Economic and Social Affairs: Sustainable Development. https://sdgs.un.org/goals WDI (2022). World Development Indicators database. https://databank.worldbank.org/source/world-development-indicators Wiebe, K., Robinson, S., & Cattaneo, A. (2019). Climate change, agriculture and food security: Impacts and the potential for adaptation and mitigation. In C. Campanhola & S. Pandey (Eds.), Sustainable food and agriculture (pp. 55–74). Academic Press. https://doi.org/10.1016/B978-0-12-812134-4.00004-2 World Bank (1993). The East Asian miracle: Economic growth and policy. Oxford University Press. https://documents1.worldbank.org/curated/en/975081468244550798/pdf/multi-page.pdf World Bank (2014). Turn down the heat: Confronting the new climate normal. Washington, DC. http://hdl.handle.net/10986/20595 World Bank (2022). Food production index. https://databank.worldbank.org/metadataglossary/environment-social-and-governance-(esg)-data/series/AG.PRD.FOOD.XD World Bank (2023). Employment in agriculture—Algeria. https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?locations=DZ Xiang, X., & Solaymani, S. (2022). Change in cereal production caused by climate change in Malaysia. Ecological Informatics, 70, 101741. https://doi.org/10.1016/j.ecoinf.2022.101741 Xu, C., Zhao, W., Li, X., Cheng, B., & Zhang, M. (2023). Quality of life and carbon emissions reduction: Does digital economy play an influential role? Climate Policy. https://doi.org/10.1080/14693062.2023.2197862