Tác động của tín hiệu trong môi trường nước từ các loài cùng loại và loài khác đến ấu trùng của Halichondria panacea Pallas, 1766 (Porifera: Demospongiae)

Russian Journal of Marine Biology - Tập 40 - Trang 36-42 - 2014
V. V. Khalaman1, N. M. Korchagina2, A. Yu. Komendantov1
1Zoological Institute, Russian Academy of Sciences, White Sea Biological Station, St. Petersburg, Russia
2Chair of Embryology, Faculty of Biology and Pedology, St. Petersburg State University, St. Petersburg, Russia

Tóm tắt

Ảnh hưởng của các nồng độ khác nhau của các sản phẩm bài tiết - tiết ra (ESPs) từ con tiết vòi đơn độc Styela rustica (Linnaeus, 1767) và bọt biển Halichondria panacea (Pallas, 1766) lên quá trình định cư, biến thái và tỷ lệ tử vong của ấu trùng H. panacea đã được nghiên cứu trong một thí nghiệm trong phòng thí nghiệm. Ở nồng độ cao, các chất được giải phóng vào môi trường bởi con tiết vòi S. rustica đã gây ra tác động tiêu cực lên tỷ lệ biến thái của ấu trùng bọt biển. Việc tiếp xúc với nồng độ vừa hoặc cao của ESPs từ các cá thể cùng loài dẫn đến tỷ lệ tử vong cao ở ấu trùng bọt biển; tuy nhiên, các nồng độ ESP thấp của cùng loài lại kích thích rõ rệt quá trình biến thái; tỷ lệ tử vong của ấu trùng thì thấp. Rõ ràng, các nồng độ khác nhau của cùng một loại ESP có thể có tác động với cường độ và trọng tâm khác nhau. Điều này cần được xem xét trong việc nghiên cứu các tương tác hóa học giữa các sinh vật thủy sinh.

Từ khóa

#Halichondria panacea #Styela rustica #ESPs #biến thái #tỷ lệ tử vong #tương tác hóa học #sinh vật thủy sinh

Tài liệu tham khảo

Ivanova, L.V., The life cycle of the Barents Sea sponge Halichondria panicea (Pallas), in Morfogenezy u gubok (Morphogeneses in Sponges), Leningrad: Leningrad. Gos. Univ., 1981, pp. 59–73. Kulakovsky, E.E. and Shamarin, A.Yu., Settlement and growth patterns of young mussels (Mytilus edulis L.) under conditions of experimental commercial cultivation in the White Sea, Tr. Zool. Inst., Akad. Nauk SSSR, 1989, vol. 203, pp. 63–75. Railkin, A.I., Kolonizatsiya tverdykh tel bentosnymi organizmami (Colonization of Solid Bodies by Benthic Organisms), St. Petersburg: St.-Peterb. Gos. Univ., 2008. Skidchenko, V.S., Vysotskaya, R.U., Krupnova, M.Yu., and Khalaman, V.V., The effect of excretory-secretory products of some White Sea fouling organisms on the biochemical indices of the mussel Mytilus edulis L. (Mollusca: Bivalvia), Izv. Ross. Akad. Nauk, Ser. Biol., 2011, no. 6, pp. 670–683. Khalaman, V.V., Belyaeva, D.V., and Flyachinskaya, L.P., Effect of excretory-secretory products of some fouling organisms on settling and metamorphosis of the larvae of Styela rustica (Ascidiae), Russ. J. Mar. Biol., 2008, vol. 34, no. 3, pp. 170–173. Khalaman, V.V. and Komendantov, A.Yu., Structure of fouling communities formed by Halichondria panicea (Porifera: Demospongiae) in the White Sea, Russ. J. Ecol., 2011, vol. 42, no. 6, pp. 493–501. Khalaman, V.V., Lezin, P.A., and Galitskaya, A.D., Effect of the excretory-secretory products of some marine invertebrates on byssus production of the blue mussel Mytilus edulis (Bivalvia: Mytilidae), Russ. J. Mar. Biol., 2009, vol. 35, no. 3, pp. 224–229. Khalaman, V.V., Mukhina, Yu.I., and Komendantov, A.Yu., The effects of the excretory-secretory products of fouling organisms on settlement of larvae of the sponge Halichondria panicea (Pallas, 1766) (Porifera: Demospongiae), Russ. J. Mar. Biol., 2011, vol. 37, no. 6, pp. 494–500. Khalaman, V.V., Flyachinskaya, L.P., and Lezin, P.A., The influence of excretory-secretory products of some fouling invertebrates on larval settlement of Mytilus edulis L. (Bivalvia: Mollusca), Zool. Bespozvonochnykh, 2009, vol. 6, no. 1, pp. 65–72. Althoff, K., Schutt, C., Steffen, R., et al., Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar. Biol., 1998, vol. 130, pp. 529–536. Andre, C. and Rosenberg, R., Adult-larval interactions in the suspension-feeding bivalves Cerastoderma edule and Mya arenaria, Mar. Ecol.; Progr. Ser., 1991, vol. 71, pp. 227–234. Becerro, M.A., Turon, X., and Uriz, M.J., Multiple functions for secondary metabolites in encrusting marine invertebrates, J. Chem. Ecol., 1997, vol. 23, pp. 1527–1547. Brock, E., Nylund, G.M., and Pavia, H., Chemical inhibition of barnacle larval settlement by the brown alga Fucus vesiculosus, Mar. Ecol.; Progr. Ser., 2007, vol. 337, pp. 165–174. Bryan, P., McClintock, J., Slattery, M., and Rittschol, D., A comparative study of the non-acidic chemically mediated antifoulant properties of three sympatric species of ascidians associated with seagrass habitats, Biofouling, 2003, vol. 19, pp. 235–245. Cimino, G., De Stefano, S., and Minale, L., Paniceins, unusual aromatic sesquiterpenoids linked to a quinol or quinone system from the marine sponge Halichondria panicea, Tetrahedron, 1973, vol. 29, pp. 2565–2570. Da Gama, B.A.P., Pereira, R.C., Soares, A.R., et al., Is the mussel test a good indicator of antifouling activity? A comparison between laboratory and field assays, Biofouling, 2003, vol. 19, pp. 161–169. Davis, A.R., Alkaloids and ascidian chemical defense: evidence for the ecological role of natural products from Eudistoma olivaceum, Mar. Biol., 1991, vol. 111, P. 375–379. Davis, A.R., Butler, A.J., van Altena, I., Settlement behaviour of ascidian larvae: preliminary evidence for inhibition by sponge allelochemicals, Mar. Ecol.; Progr. Ser., 1991, vol. 72, pp. 117–123. Degnan, B.M. and Johnson, C.R., Inhibition of settlement and metamorphosis of the ascidian Herdmania curvata by non-geniculate coralline algae, Biol. Bull., 1999, vol. 197, pp. 332–340. De Voogd, N.J., Becking, L.E., Hoeksema, B.W., et al., Sponge interactions with spatial competitors in the Spermonde Archipelago, Boll. Mus. Ist. Biol. Univ. Genova, 2004, vol. 68, pp. 253–261. Dobretsov, S., Dahms, H.-U., and Qian, P.Y., Antilarval and antimicrobial activity of waterborne metabolites of the sponge Callyspongia (Euplacella) pulvinata: evidence of allelopathy, Mar. Ecol.; Progr. Ser., 2004, vol. 271, pp. 133–146. Dobretsov, S., Dahms, H.-U., Tsoi, M.Y., and Qian, P.-Yu., Chemical control of epibiosis by Hong Kong sponges: the effect of sponge extracts on micro- and macrofouling communities, Mar. Ecol.; Progr. Ser., 2005, vol. 297, pp. 119–129. Durante, K.M., Larval behavior, settlement preference and induction of metamorphosis in the temperate solitory ascidian Molgula citrine Alder, Hancock, J. Exp. Mar. Biol. Ecol., 1991, vol. 145, pp. 175–187. Dyrynda, P.E., Modular sessile invertebrates contain larvatoxic allelochemicals, Dev. Comp. Immunol., 1983, vol. 7, pp. 621–624. Engel, S. and Pawlik, J.R., Allelopathic activities of sponge extracts, Mar. Ecol.; Progr. Ser., 2000, vol. 207, pp. 273–281. Green, K.M., Russell, B.D., Clark, R.J., et al., A sponge allelochemical induces ascidian settlement but inhibits metamorphosis, Mar. Biol., 2002, vol. 140, pp. 355–363. Henrikson, A.A. and Pawlik, J.R., A new antifouling assay method: results from field experiments using extracts of four marine organisms, J. Exp. Mar. Biol. Ecol., 1995, vol. 194, pp. 157–165. Ivanisevic, J., Thomas, O.P., Pedel, L., et al., Biochemical trade-offs: evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi, PLos One, 2011, vol. 6, pp. 1–11. Joullie, M.M., Leonard, M.S., Portonovo, P., et al., Chemical defense in ascidians of the Didemnidae family, Bioconj. Chem., 2003, vol. 14, pp. 30–37. Kobayashi, M. and Kitagawa, I., Likely microbial participation in the production of bioactive marine sponge chemical constituents, in Sponge Sciences: Multidisciplinary Perspectives, Tokyo: Springer-Verlag, 1998, pp. 379–389. Koh, E.G.L. and Sweatman, H., Chemical warfare among scleractinians: bioactive natural products from Tubastraea faulkneri Wells kill larvae of potential competitors, J. Exp. Mar. Biol. Ecol., 2000, vol. 251, pp. 141–160. Koplovitz, G., McClintock, J.B., Amsler, Ch.D., and Baker, B.J., A comprehensive evaluation of the potential chemical defenses of Antarctic ascidians against sympatric fouling microorganisms, Mar. Biol., 2011, vol. 158, pp. 2661–2671. Krug, P.J., Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race, in Progress in Molecular and Subcellular Biology: Marine Molecular Biotechnology, Antifouling Compounds, Berlin: Springer, 2006, pp. 1–53. Leong, W. and Pawlik, J.R., Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges, Mar. Ecol.; Progr. Ser., 2010, vol. 406, pp. 71–78. Lippert, H., Brinkmeyer, R., Mulhaupt, T., and Iken, K., Antimicrobial activity in sub-Arctic marine invertebrates, Polar Biol., 2003, vol. 26, pp. 591–600. Manilal, A., Sujith, S., Sabarathnam, B., et al., Antifouling potentials of seaweeds collected from the southwest coast of India, World J. Agric. Sci., 2010, vol. 6, pp. 243–248. Marti, R., Fontana, A., Uriz, M.J., and Cimino, G., Quantitative assessment of natural toxicity in sponges: toxicity bioassay versus compound quantification, J. Chem. Ecol., 2003, vol. 29, pp. 1307–1318. Martin, D. and Uriz, M.J., Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates, J. Exp. Mar. Biol. Ecol., 1993, vol. 173, pp. 11–27. McClintock, J.B., Amsler, M.O., Amsler, C.D., et al., Biochemical composition, energy content and chemical antifeedant and antifoulant defenses of the colonial Antarctic ascidian Distaplia cylindrica, Mar. Biol., 2004, vol. 145, pp. 885–894. Nakamura, H., Deng, S., Takamansu, M., et al., Structure of halipanicine, a new sesquiterpene isothiocyanate from the Okinawan marine sponge Halichondria panicea (Pallas), Agric. Biol. Chem., 1991, vol. 55, pp. 581–583. Núñez-Pons, L., Forestieri, R., Nieto, R.N., et al., Chemical defenses of tunicates of the genus Aplidium from the Weddell Sea (Antarctica), Polar Biol., 2010, vol. 33, pp. 1319–1329. Odate, S. and Pawlik, J.R., The role of vanadium in the chemical defense of the solitary tunicate, Phallusia nigra, J. Chem. Ecol., 2007, vol. 33, pp. 643–654. Paul, V.J., Kuffner, I.B., Walters, L.J., et al., Chemically mediated interactions between macroalgae Dictyota spp. and multiple life-history stages of the coral Porites asteroides, Mar. Ecol.; Progr. Ser., 2011, vol. 426, pp. 161–170. Pawlik, J.R., Henkel, T.P., McMurray, S.E., et al., Patterns of sponge recruitment and growth on a shipwreck corroborate chemical defense resource trade-off, Mar. Ecol.; Progr. Ser., 2008, vol. 368, pp. 137–143. Pereira, R.C., Carvalho, A.G.V., Gama, B.A.P., and Coutinho, R., Field experimental evaluation of secondary metabolites from marine invertebrates as antifoulants, Braz. J. Biol., 2002, vol. 62, pp. 311–320. Pisut, D.P. and Pawlik, J.R., Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? J. Exp. Mar. Biol. Ecol., 2002, vol. 270, pp. 203–214. Schneemann, I., Nagel, K., Kajahn, I., et al., Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea, Appl. Environ. Microbiol., 2010, vol. 76, pp. 3702–3714. Stoecker, D., Chemical defenses of ascidians against predators, Ecology, 1980, vol. 61, pp. 1327–1334. Tamburri, M.N., Finelli, C.M., Wethey, D.S., and Zimmer-Faust, R.K., Chemical induction of larval settlement behavior in flow, Biol. Bull., 1996, vol. 191, pp. 367–373. Thacker, R.W., Becerro, M.A., Lumbang, W.A., and Paul, V.J., Allelopathic interactions between sponges on a tropical reef, Ecology, 1998, vol. 79, pp. 1740–1750. Turon, X., Becerro, M.A., Uriz, M.J., and Llopis, J., Small-scale association measures in epibenthic communities as a clue for allelochemical interactions, Oecologia, 1996, vol. 108, pp. 351–360. Turon, X., Marti, R., and Uriz, M.J., Chemical bioactivity of sponges along an environmental gradient in a Mediterranean cave, Sci. Mar., 2009, vol. 73, pp. 387–397. Woodin, S.A., Recruitment of infauna: positive or negative cues, Am. Zool., 1991, vol. 31, pp. 797–807. Young, C.M. and Chia, F.-S., Laboratory evidence for delay of larval settlement in response to a dominant competitor, Int. J. Invertebr. Reprod., 1981, vol. 3, pp. 221–226. Young, E.F., Bigg, G.R., Grant, A., et al., A modelling study of environmental influences on bivalve settlement in The Wash, England, Mar. Ecol; Progr. Ser., 1998, vol. 172, pp. 197–214.