Tác động của nucleoside purin đến sự dẻo dai của não bộ ở người trưởng thành

Purinergic Signalling - Trang 1-19 - 2024
Beatriz dos Santos1,2, Tetsade Piermartiri1,2, Carla I. Tasca1,2,3
1Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
2Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
3Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil

Tóm tắt

Tính dẻo dai thần kinh đề cập đến khả năng của hệ thần kinh trong việc thích ứng và tổ chức lại các cấu trúc tế bào và mạng lưới nơron của nó để đáp ứng với các kích thích bên trong và bên ngoài. Ở người trưởng thành, quá trình này bao gồm sự tạo nơron, hình thành synapse và dẻo dai synaptic cùng với dẻo dai neurochemical. Nhiều nghiên cứu đã báo cáo về tác động đáng kể của hệ thống purin trong việc điều chế sự dẻo dai thần kinh. Hơn nữa, có nhiều bằng chứng hỗ trợ vai trò của các nucleoside purin, chẳng hạn như adenosine, inosine và guanosine, trong quá trình này. Bài đánh giá này trình bày nghiên cứu sâu rộng về cách mà các nucleoside này tăng cường sự dẻo dai thần kinh của hệ thần kinh trung ương ở người trưởng thành, đặc biệt là đáp ứng với tổn thương. Các cơ chế mà các nucleoside này thể hiện tác dụng của chúng liên quan đến các tương tác phức tạp với các thụ thể và con đường tín hiệu khác nhau. Ảnh hưởng của adenosine đối với sự tạo nơron liên quan đến các tương tác với các thụ thể adenosine, cụ thể là A1R và A2AR. Việc kích hoạt A1R dường như ức chế sự phân biệt của nơron và thúc đẩy sự hình thành tế bào sao, trong khi việc kích hoạt A2AR hỗ trợ sự tạo nơron, hình thành sợi nơron và dẻo dai synaptic. Inosine và guanosine có tác động tích cực đến sự phát triển tế bào, tạo nơron và hình thành sợi nơron. Inosine dường như điều chỉnh mức độ adenosine ngoại bào, và guanosine có thể tác động thông qua các tương tác giữa hệ thống purin và hệ thống glutamergic. Ngoài ra, bài đánh giá còn thảo luận về các khả năng điều trị của tín hiệu purin trong các bệnh thoái hóa thần kinh và tâm thần kinh, nhấn mạnh tầm quan trọng của các nucleoside này trong sự dẻo dai thần kinh của chức năng và sự phục hồi của não.

Từ khóa

#sự dẻo dai thần kinh #nucleoside purin #adenosine #inosine #guanosine #hệ thần kinh trung ương #kích thích tố #tổn thương não

Tài liệu tham khảo

Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94(4):991–1026. https://doi.org/10.1152/PHYSREV.00004.2014 Kempermann G, Gage FH (1998) Closer to neurogenesis in adult humans. Nat Med 4(5):555–557. https://doi.org/10.1038/NM0598-555 Rodrigues RJ, Marques JM, Cunha RA (2019) Purinergic signalling and brain development. Semin Cell Dev Biol 95:34–41. https://doi.org/10.1016/J.SEMCDB.2018.12.001 M Puderbaugh and PD Emmady (2023) Neuroplasticity. Treasure Island FL StatPearls. M Jiang, SE Jang, L Zeng (2023) ‘The effects of extrinsic and intrinsic factors on neurogenesis’ Cells 12(9) https://doi.org/10.3390/CELLS12091285. Cramer SC et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134(6):1591–1609. https://doi.org/10.1093/BRAIN/AWR039 Castrén E, Antila H (2017) Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 22(8):1085–1095. https://doi.org/10.1038/MP.2017.61 Castrén E, Hen R (2013) Neuronal plasticity and antidepressant actions. Trends Neurosci 36(5):259–267. https://doi.org/10.1016/J.TINS.2012.12.010 Gallagher A, Bulteau C, Cohen D, Michaud JL (2019). Neurocognitive Development: Normative Development, vol 173, no 1. Elsevier, pp 2–513 Singh S, Mishra A, Srivastava N, Shukla S (2017) MK-801 (dizocilpine) regulates multiple steps of adult hippocampal neurogenesis and alters psychological symptoms via Wnt/β-catenin signaling in parkinsonian rats. ACS Chem Neurosci 8(3):592–605. https://doi.org/10.1021/ACSCHEMNEURO.6B00354 Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Compar Neurol 124(3):319–335. https://doi.org/10.1002/CNE.901240303 Mokhemer SA, Desouky MK, Abdelghany AK, Ibrahim MFG (2023) Stem cells therapeutic effect in a reserpine-induced fibromyalgia rat model: a possible NLRP3 inflammasome modulation with neurogenesis promotion in the cerebral cortex. Life Sci 325:121784. https://doi.org/10.1016/J.LFS.2023.121784 EP Bless et al. (2016) ‘Adult neurogenesis in the female mouse hypothalamus: estradiol and high-fat diet alter the generation of newborn neurons expressing estrogen receptor α’, eNeuro, 3(4) https://doi.org/10.1523/ENEURO.0027-16.2016 Bernier PJ, Bédard A, Vinet J, Lévesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci U S A 99(17):11464–11469. https://doi.org/10.1073/PNAS.172403999 Bartkowska K, Turlejski K, Koguc-Sobolewska P, Djavadian R (2023) Adult neurogenesis in the mammalian hypothalamus: impact of newly generated neurons on hypothalamic function. Neuroscience 515:83–92. https://doi.org/10.1016/J.NEUROSCIENCE.2023.02.012 Ribeiro FF, Xapelli S (2021) An overview of adult neurogenesis. Adv Exp Med Biol 1331:77–94. https://doi.org/10.1007/978-3-030-74046-7_7 Denoth-Lippuner A, Jessberger S (2021) Formation and integration of new neurons in the adult hippocampus. Nat Rev Neurosci 22(4):223–236. https://doi.org/10.1038/s41583-021-00433-z Gonçalves JT, Schafer ST, Gage FH (2016) Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167(4):897–914. https://doi.org/10.1016/J.CELL.2016.10.021 Waites CL, Craig AM, Garner CC (2005) Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28:251–274. https://doi.org/10.1146/ANNUREV.NEURO.27.070203.144336 KM Harris and SB Kater (1994) ‘Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function’ Annu Rev Neurosci 17 341–371 https://doi.org/10.1146/ANNUREV.NE.17.030194.002013. Lai KO, Ip NY (2013) Structural plasticity of dendritic spines: the underlying mechanisms and its dysregulation in brain disorders. Biochim Biophys Acta Mol Basis Dis 1832(12):2257–2263. https://doi.org/10.1016/J.BBADIS.2013.08.012 Woolfrey KM, Dell’Acqua ML (2015) Coordination of protein phosphorylation and dephosphorylation in synaptic plasticity. J Biol Chem 290(48):28604–28612. https://doi.org/10.1074/JBC.R115.657262 Citri A, Malenka RC (2008) Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 33(1):18–41. https://doi.org/10.1038/sj.npp.1301559 M Fumagalli, D Lecca, MP Abbracchio, S Ceruti (2017) ‘Pathophysiological role of purines and pyrimidines in neurodevelopment: unveiling new pharmacological approaches to congenital brain diseases’ Front Pharmacol 8 https://doi.org/10.3389/FPHAR.2017.00941. DE Ribeiro, T Glaser, A Oliveira-Giacomelli and H Ulrich (2019) ‘Purinergic receptors in neurogenic processes’ Brain Res Bull 151 3–11 https://doi.org/10.1016/J.BRAINRESBULL.2018.12.013. D Lecca, M Fumagalli, S Ceruti and MP Abbracchio (2016) ‘Intertwining extracellular nucleotides and their receptors with Ca2+ in determining adult neural stem cell survival, proliferation and final fate’ Philos Trans R Soc Lond B Biol Sci 371(1700) https://doi.org/10.1098/RSTB.2015.0433. EK Jackson, D Cheng, TC Jackson, JD Verrier and DG Gillespie (2013) ‘Extracellular guanosine regulates extracellular adenosine levels’, Am J Physiol Cell Physiol 304(5) https://doi.org/10.1152/AJPCELL.00212.2012. Burnstock G (2020) Introduction to purinergic signalling in the brain. Adv Exp Med Biol 1202:1–12. https://doi.org/10.1007/978-3-030-30651-9_1/COVER Burnstock G (2011) Introductory overview of purinergic signalling. Front Biosci Elite 3(3):896–900. https://doi.org/10.2741/E298/PDF Santos TG, Souza DO, Tasca CI (2006) GTP uptake into rat brain synaptic vesicles. Brain Res 1070(1):71–76. https://doi.org/10.1016/J.BRAINRES.2005.10.099 Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116(3):401–416. https://doi.org/10.1016/J.PHARMTHERA.2007.07.004 Wong PC, Henderson JF (1972) Purine ribonucleotide biosynthesis, interconversion and catabolism in mouse brain in vitro. Biochem J 129(5):1085–1094. https://doi.org/10.1042/BJ1291085 Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64(12):1471–1483. https://doi.org/10.1007/S00018-007-6497-0 G Burnstock (2017) ‘Purinergic signalling: therapeutic developments’, Front Pharmacol 8 https://doi.org/10.3389/FPHAR.2017.00661. Burnstock G (2013) Introduction to purinergic signalling in the brain. Adv Exp Med Biol 986:1–12. https://doi.org/10.1007/978-94-007-4719-7_1 Dal-Cim T et al (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126(4):437–450. https://doi.org/10.1111/JNC.12324 El-Shamarka MES, El-Sahar AE, Saad MA, Assaf N, Sayed RH (2022) Inosine attenuates 3-nitropropionic acid-induced Huntington’s disease-like symptoms in rats via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway. Life Sci 300:120569. https://doi.org/10.1016/J.LFS.2022.120569 Frinchi M et al (2020) Guanosine-mediated anxiolytic-like effect: interplay with adenosine a1 and a2a receptors. Int J Mol Sci 21(23):1–15. https://doi.org/10.3390/IJMS21239281 IS Kim and EK Jo (2022) Inosine: a bioactive metabolite with multimodal actions in human diseases Front Pharmacol 13 https://doi.org/10.3389/FPHAR.2022.1043970. Palmer TM, Stiles GL (1995) Adenosine receptors. Neuropharmacology 34(7):683–694. https://doi.org/10.1016/0028-3908(95)00044-7 Cunha RA (2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139(6):1019–1055. https://doi.org/10.1111/JNC.13724 Matos M et al (2012) Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 60(5):702–716. https://doi.org/10.1002/GLIA.22290 Matos M, Augusto E, MacHado NJ, Dos Santos-Rodrigues A, Cunha RA, Agostinho P (2012) Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. J Alzheim Dis 31(3):555–567. https://doi.org/10.3233/JAD-2012-120469 S Ferré et al (2022) G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs) Pharmacol Ther 231 https://doi.org/10.1016/J.PHARMTHERA.2021.107977. G Navarro et al (2018) Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase Nat Commun 9(1) https://doi.org/10.1038/S41467-018-03522-3. Ciruela F et al (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1–A2A receptor heteromers. J Neurosci 26(7):2080–2087. https://doi.org/10.1523/JNEUROSCI.3574-05.2006 Traversa U, Bombi G, Di Iorio P, Ciccarelli R, Werstiuk ES, Rathbone MP (2002) Specific [(3)H]-guanosine binding sites in rat brain membranes. Br J Pharmacol 135(4):969–976. https://doi.org/10.1038/SJ.BJP.0704542 Volpini R et al (2011) Evidence for the existence of a specific g protein-coupled receptor activated by guanosine. ChemMedChem 6(6):1074–1080. https://doi.org/10.1002/CMDC.201100100 Tasca CI, Lanznaster D, Oliveira KA, Fernández-Dueñas V, Ciruela F (2018) Neuromodulatory effects of guanine-based purines in health and disease. Front Cell Neurosci 12:376. https://doi.org/10.3389/fncel.2018.00376 R Ciccarelli et al 1999 Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia Glia https://doi.org/10.1002/(SICI)1098-1136(19990101)25:1 Rathbone MP, Middlemiss PJ, de Luca B, Jovetich M (1991) Extracellular guanosine increases astrocyte cAMP: inhibition by adenosine A2 antagonists. NeuroReport 2(11):661–664. https://doi.org/10.1097/00001756-199111000-00007 Rathbone MP, Middlemiss PJ, Gysbers JW, DeForge S, Costello P, Del Maestro RF (1992) Purine nucleosides and nucleotides stimulate proliferation of a wide range of cell types. In Vitro Cell Dev Biol 28A(7–8):529–536. https://doi.org/10.1007/BF02634137 Almeida RF et al (2017) Guanosine anxiolytic-like effect involves adenosinergic and glutamatergic neurotransmitter systems. Mol Neurobiol 54(1):423–436. https://doi.org/10.1007/s12035-015-9660-x Dal-Cim T, Poluceno GG, Lanznaster D, de Oliveira KA, Nedel CB, Tasca CI (2019) Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A1 and A2A adenosine receptors and PI3K, MEK, and PKC pathways. Purinergic Signal 15(4):465–476. https://doi.org/10.1007/s11302-019-09679-w Dobrachinski F et al (2019) Guanosine Attenuates Behavioral deficits after traumatic brain injury by modulation of adenosinergic receptors. Mol Neurobiol 56(5):3145–3158. https://doi.org/10.1007/S12035-018-1296-1 D Lanznaster et al (2019) Adenosine A1-A2A receptor-receptor interaction: contribution to guanosine-mediated effects Cells 8(12) https://doi.org/10.3390/CELLS8121630. Gomes JI et al (2021) Of adenosine and the blues: the adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 163:105363. https://doi.org/10.1016/J.PHRS.2020.105363 Parkinson FE et al (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem 11(8):948–972. https://doi.org/10.2174/156802611795347582 N Rotermund, K Schulz, D Hirnet and C Lohr (2019) Purinergic signaling in the vertebrate olfactory system, Front Cell Neurosci 13 https://doi.org/10.3389/FNCEL.2019.00112. R Guinzberg, D Cortés, A Díaz-Cruz, H Riveros-Rosas, R Villalobos-Molina, E Piña (2006) Inosine released after hypoxia activates hepatic glucose liberation through A3 adenosine receptors Am J Physiol Endocrinol Metab 290(5) https://doi.org/10.1152/AJPENDO.00173.2005. Litsky ML, Hohl CM, Lucas JH, Jurkowitz MS (1999) Inosine and guanosine preserve neuronal and glial cell viability in mouse spinal cord cultures during chemical hypoxia. Brain Res 821(2):426–432. https://doi.org/10.1016/S0006-8993(99)01086-0 Jurkowitz MS, Litsky ML, Browning MJ, Hohl CM (1998) Adenosine, inosine, and guanosine protect glial cells during glucose deprivation and mitochondrial inhibition: correlation between protection and ATP preservation. J Neurochem 71(2):535–548. https://doi.org/10.1046/J.1471-4159.1998.71020535.X Böcklinger K, Tomaselli B, Heftberger V, Podhraski V, Bandtlow C, Baier-Bitterlich G (2004) Purine nucleosides support the neurite outgrowth of primary rat cerebellar granule cells after hypoxia. Eur J Cell Biol 83(2):51–54. https://doi.org/10.1078/0171-9335-00362 Haskó G, Sitkovsky MV, Szabó C (2004) Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol Sci 25(3):152–157. https://doi.org/10.1016/J.TIPS.2004.01.006 Lanznaster D, Dal-Cim T, Piermartiri TCB, Tasca CI (2016) Guanosine: a neuromodulator with therapeutic potential in brain disorders. Aging Dis 7(5):657–679. https://doi.org/10.14336/AD.2016.0208 Grimm I, Ullsperger SN, Zimmermann H (2010) Nucleotides and epidermal growth factor induce parallel cytoskeletal rearrangements and migration in cultured adult murine neural stem cells. Acta Physiol 199(2):181–189. https://doi.org/10.1111/J.1748-1716.2010.02092.X Mishra SK et al (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133(4):675–684. https://doi.org/10.1242/dev.02233 Benito-Muñoz M, Matute C, Cavaliere F (2016) Adenosine A1 receptor inhibits postnatal neurogenesis and sustains astrogliogenesis from the subventricular zone. Glia 64(9):1465–1478. https://doi.org/10.1002/GLIA.23010 Migita H et al (2008) Activation of adenosine A1 receptor-induced neural stem cell proliferation via MEK/ERK and Akt signaling pathways. J Neurosci Res 86(13):2820–2828. https://doi.org/10.1002/JNR.21742 Chauhan G et al (2016) Adenosine A1 receptor antagonist mitigates deleterious effects of sleep deprivation on adult neurogenesis and spatial reference memory in rats. Neuroscience 337:107–116. https://doi.org/10.1016/J.NEUROSCIENCE.2016.09.007 Shukla M et al (2019) Attenuation of adverse effects of noise induced hearing loss on adult neurogenesis and memory in rats by intervention with adenosine A2A receptor agonist. Brain Res Bull 147:47–57. https://doi.org/10.1016/J.BRAINRESBULL.2019.02.006 Oliveros A et al (2017) Adenosine A2A receptor and ERK-driven impulsivity potentiates hippocampal neuroblast proliferation. Transl Psychiatry 7(4):e1095. https://doi.org/10.1038/TP.2017.64 A Oliveros et al (2022) Adenosine A2A receptor blockade prevents cisplatin-induced impairments in neurogenesis and cognitive function Proc Natl Acad Sci U S A 119(28) https://doi.org/10.1073/PNAS.2206415119. Horgusluoglu-Moloch E et al (2017) Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 60:92–103. https://doi.org/10.1016/J.NEUROBIOLAGING.2017.08.010 Rampon C, Gauron C, Meda F, Volovitch M, Vriz S (2014) Adenosine enhances progenitor cell recruitment and nerve growth via its A2B receptor during adult fin regeneration. Purinergic Signal 10(4):595–602. https://doi.org/10.1007/S11302-014-9420-9 Thevananther S, Rivera A, Rivkees SA (2001) A1 adenosine receptor activation inhibits neurite process formation by Rho kinase-mediated pathways. NeuroReport 12(14):3057–3063. https://doi.org/10.1097/00001756-200110080-00015 Canals M et al (2005) Molecular mechanisms involved in the adenosine A1 and A 2A receptor-induced neuronal differentiation in neuroblastoma cells and striatal primary cultures. J Neurochem 92(2):337–348. https://doi.org/10.1111/j.1471-4159.2004.02856.x Sun CN et al (2010) The A2A adenosine receptor rescues neuritogenesis impaired by p53 blockage via KIF2A, a kinesin family member. Dev Neurobiol 70(8):604–621. https://doi.org/10.1002/DNEU.20802 Chern Y, Chien T, Fu X, Shah AP, Abel T, Baraban JM (2019) Trax: a versatile signaling protein plays key roles in synaptic plasticity and DNA repair. Neurobiol Learn Mem 159:46. https://doi.org/10.1016/J.NLM.2018.07.003 Ribeiro FF et al (2021) Regulation of hippocampal postnatal and adult neurogenesis by adenosine A2A receptor: Interaction with brain-derived neurotrophic factor. Stem Cells 39(10):1362–1381. https://doi.org/10.1002/STEM.3421 Cheng HC, Shih HM, Chern Y (2002) Essential role of cAMP-response element-binding protein activation by A2A adenosine receptors in rescuing the nerve growth factor-induced neurite outgrowth impaired by blockage of the MAPK cascade. J Biol Chem 277(37):33930–33942. https://doi.org/10.1074/JBC.M201206200 Nakashima KI et al (2018) Stimulation of the adenosine A3 receptor, not the A1 or A2 receptors, promote neurite outgrowth of retinal ganglion cells. Exp Eye Res 170:160–168. https://doi.org/10.1016/J.EXER.2018.02.019 Reis SL, Silva HB, Almeida M, Cunha RA, Simões AP, Canas PM (2019) Adenosine A1 and A2A receptors differently control synaptic plasticity in the mouse dorsal and ventral hippocampus. J Neurochem 151(2):227–237. https://doi.org/10.1111/JNC.14816 Xia J et al (2009) Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/orexin neurons. Neuroscience 162(4):980–988. https://doi.org/10.1016/J.NEUROSCIENCE.2009.05.033 Moore KA, Nicoll RA, Schmitz D (2003) Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc Natl Acad Sci U S A 100(24):14397. https://doi.org/10.1073/PNAS.1835831100 SP Perrier, M Gleizes, C Fonta, LG Nowak (2019) Effect of adenosine on short-term synaptic plasticity in mouse piriform cortex in vitro: adenosine acts as a high-pass filter Physiol Rep 7(3) https://doi.org/10.14814/PHY2.13992. Costenla AR, De Mendonça A, Ribeiro JA (1999) Adenosine modulates synaptic plasticity in hippocampal slices from aged rats. Brain Res 851(1–2):228–234. https://doi.org/10.1016/S0006-8993(99)02194-0 Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65(1):7–19. https://doi.org/10.1016/J.NEURON.2009.11.031 D Madeira, CR Lopes, AP Simões, PM Canas, RA Cunha and P Agostinho (2023) Astrocytic A2A receptors silencing negatively impacts hippocampal synaptic plasticity and memory of adult mice Glia 71(9) https://doi.org/10.1002/GLIA.24384. Costenla AR, Lopes LV, De Mendonça A, Ribeiro JA (2001) A functional role for adenosine A3 receptors: modulation of synaptic plasticity in the rat hippocampus. Neurosci Lett 302(1):53–57. https://doi.org/10.1016/S0304-3940(01)01633-0 Xia JX, Xiong JX, Wang HK, Duan SM, Ye JN, Hu ZA (2012) Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons. Neuroscience 201:46–56. https://doi.org/10.1016/J.NEUROSCIENCE.2011.11.019 Flajolet M et al (2008) FGF acts as a co-transmitter through Adenosine A2A receptor to regulate morphological and physiological synaptic plasticity. Nat Neurosci 11(12):1402. https://doi.org/10.1038/NN.2216 Moscoso-Castro M, López-Cano M, Gracia-Rubio I, Ciruela F, Valverde O (2017) Cognitive impairments associated with alterations in synaptic proteins induced by the genetic loss of adenosine A2A receptors in mice. Neuropharmacology 126:48–57. https://doi.org/10.1016/J.NEUROPHARM.2017.08.027 Ruhal P, Dhingra D (2018) Inosine improves cognitive function and decreases aging-induced oxidative stress and neuroinflammation in aged female rats. Inflammopharmacology 26(5):1317–1329. https://doi.org/10.1007/S10787-018-0476-Y E Samami, E Aleebrahim-Dehkordi, M Mohebalizadeh, S Yaribash, A Saghazadeh and N Rezaei (2023) Inosine, gut microbiota, and cancer immunometabolism Am J Physiol Endocrinol Metab 324(1) https://doi.org/10.1152/AJPENDO.00207.2022. Mager LF et al (2020) Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369(6510):1481–1489. https://doi.org/10.1126/SCIENCE.ABC3421 Lima GF et al (2020) Inosine, an endogenous purine nucleoside, avoids early stages of atherosclerosis development associated to eNOS activation and p38 MAPK/NF-kB inhibition in rats. Eur J Pharmacol 882:173289. https://doi.org/10.1016/J.EJPHAR.2020.173289 Welihinda AA, Kaur M, Greene K, Zhai Y, Amento EP (2016) The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell Signal 28(6):552–560. https://doi.org/10.1016/J.CELLSIG.2016.02.010 Wu Z et al (2008) Reduced cell death by inosine pretreatment after photochemically induced cerebral ischemia in adult rats. Prog Nat Sci 18(12):1513–1518. https://doi.org/10.1016/J.PNSC.2008.03.032 Cipriani S, Bakshi R, Schwarzschild MA (2014) Protection by inosine in a cellular model of Parkinson’s disease. Neuroscience 274:242–249. https://doi.org/10.1016/J.NEUROSCIENCE.2014.05.038 Markowitz CE et al (2009) The Treatment of Multiple Sclerosis with Inosine. J Altern Complement Med 15(6):619. https://doi.org/10.1089/ACM.2008.0513 Doyle C, Cristofaro V, Sullivan MP, Adam RM (2018) Inosine - a multifunctional treatment for complications of neurologic injury. Cell Physiol Biochem 49(6):2293–2303. https://doi.org/10.1159/000493831 Benowitz LI, Goldberg DE, Madsen JR, Soni D, Irwin N (1999) Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury. Proc Natl Acad Sci U S A 96(23):13486–13490. https://doi.org/10.1073/PNAS.96.23.13486 Kuricova M et al (2014) Oral administration of inosine promotes recovery after experimental spinal cord injury in rat. Neurol Sci 35(11):1785–1791. https://doi.org/10.1007/S10072-014-1840-3/FIGURES/5 Smith JM et al (2007) Inosine promotes recovery of skilled motor function in a model of focal brain injury. Brain 130(Pt 4):915–925. https://doi.org/10.1093/BRAIN/AWL393 L Zai et al (2009) Development/plasticity/repair inosine alters gene expression and axonal projections in neurons contralateral to a cortical infarct and improves skilled use of the impaired limb https://doi.org/10.1523/JNEUROSCI.0414-09.2009. Valada P et al (2023) The impact of inosine on hippocampal synaptic transmission and plasticity involves the release of adenosine through equilibrative nucleoside transporters rather than the direct activation of adenosine receptors. Purinergic Signal 19(2):451–461. https://doi.org/10.1007/S11302-022-09899-7 Ciccarelli R et al (2007) Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes. Mol Pharmacol 71(5):1369–1380. https://doi.org/10.1124/MOL.106.031617 Decker H et al (2019) Guanosine and GMP increase the number of granular cerebellar neurons in culture: dependence on adenosine A2A and ionotropic glutamate receptors. Purinergic Signal 15(4):439. https://doi.org/10.1007/S11302-019-09677-Y Deutsch SI, Rosse RB, Long KD, Gaskins BL, Mastropaolo J (2008) Guanosine possesses specific modulatory effects on NMDA receptor-mediated neurotransmission in intact mice. Eur Neuropsychopharmacol 18(4):299–302. https://doi.org/10.1016/J.EURONEURO.2007.07.010 Porciúncula LO, Vinadé L, Wofchuk S, Souza DO (2002) Guanine based purines inhibit [3H]glutamate and [3H]AMPA binding at postsynaptic densities from cerebral cortex of rats. Brain Res 928(1–2):106–112. https://doi.org/10.1016/S0006-8993(01)03368-6 TCB Piermartiri, B Dos Santos, FGQ Barros-Aragão, RD Prediger, CI Tasca (2020) Guanosine promotes proliferation in neural stem cells from hippocampus and neurogenesis in adult mice https://doi.org/10.1007/s12035-020-01977-4/Published. Su C, Wang P, Jiang C, Ballerini P, Caciagli F, Rathbone P, Jiang S (2013) Guanosine promotes proliferation of neural stem cells through cAMP-CREB pathway. J Biol Regul Homeost Agents 27(3):673–680 Guarnieri S et al (2009) Extracellular guanosine and GTP promote expression of differentiation markers and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells. Int J Dev Neurosci 27(2):135–147. https://doi.org/10.1016/J.IJDEVNEU.2008.11.007 Bettio LEB et al (2016) The antidepressant-like effect of chronic guanosine treatment is associated with increased hippocampal neuronal differentiation. Eur J Neurosci 43(8):1006–1015. https://doi.org/10.1111/EJN.13172 Deng G, Qiu Z, Li D, Fang Y, Zhang S (2017) Delayed administration of guanosine improves long-term functional recovery and enhances neurogenesis and angiogenesis in a mouse model of photothrombotic stroke. Mol Med Rep 15(6):3999–4004. https://doi.org/10.3892/MMR.2017.6521 Su C et al (2009) Guanosine improves motor behavior, reduces apoptosis, and stimulates neurogenesis in rats with parkinsonism. J Neurosci Res 87(3):617–625. https://doi.org/10.1002/JNR.21883 Jiang S et al (2003) Guanosine promotes myelination and functional recovery in chronic spinal injury. NeuroReport 14(18):2463–2467. https://doi.org/10.1097/00001756-200312190-00034 Bau C et al (2005) Guanosine stimulates neurite outgrowth in PC12 cells via activation of heme oxygenase and cyclic GMP. Purinergic Signal 1(2):161–172. https://doi.org/10.1007/S11302-005-6214-0 Gysbers JW, Rathbone MP (1996) Neurite outgrowth in PC12 cells is enhanced by guanosine through both cAMP-dependent and -independent mechanisms. Neurosci Lett 220(3):175–178. https://doi.org/10.1016/S0304-3940(96)13253-5 Rathbone MP et al (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59(6):663–690. https://doi.org/10.1016/S0301-0082(99)00017-9 Ciccarelli R et al (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 19(4):395–414. https://doi.org/10.1016/S0736-5748(00)00084-8 Middlemiss PJ, Gysbers JW, Rathbone MP (1995) Extracellular guanosine and guanosine-5’-triphosphate increase: NGF synthesis and release from cultured mouse neopallial astrocytes. Brain Res 677(1):152–156. https://doi.org/10.1016/0006-8993(95)00156-K Decker H et al (2007) Guanine derivatives modulate extracellular matrix proteins organization and improve neuron-astrocyte co-culture. J Neurosci Res 85(9):1943–1951. https://doi.org/10.1002/JNR.21332 Gerrikagoitia I, Martínez-Millán L (2009) Guanosine-induced synaptogenesis in the adult brain in vivo. Anat Rec (Hoboken) 292(12):1968–1975. https://doi.org/10.1002/AR.20999 Rosa PB et al (2021) Antidepressant-like effect of guanosine involves activation of AMPA receptor and BDNF/TrkB signaling. Purinergic Signal 17(2):285–301. https://doi.org/10.1007/S11302-021-09779-6 Li X, Jia Z, Yan Y (2022) Ticagrelor for prevention of stroke and cognitive impairment in patients with vascular high-risk factors: a meta-analysis of randomized controlled trials. Int J Cardiol 353:96–102. https://doi.org/10.1016/j.ijcard.2022.01.060 Kovalenko AL et al (2023) Results of a clinical and experimental study of the safety and efficacy of Cytoflavin in combination with reperfusion therapy for ischemic stroke. Zh Nevrol Psikhiatr Im S S Korsakova 123(8):75–81. https://doi.org/10.17116/JNEVRO202312308175 Schwarzschild MA et al (2021) Effect of urate-elevating inosine on early Parkinson disease progression: the SURE-PD3 randomized clinical trial. JAMA 326(10):926–939. https://doi.org/10.1001/JAMA.2021.10207 Walk D et al (2023) Randomized trial of inosine for urate elevation in amyotrophic lateral sclerosis. Muscle Nerve 67(5):378–386. https://doi.org/10.1002/MUS.27807 Paganoni S et al (2012) Uric acid levels predict survival in men with amyotrophic lateral sclerosis. J Neurol 259(9):1923–1928. https://doi.org/10.1007/S00415-012-6440-7 D Hooper Inosine in the over-the-counter treatment of MS Accessed: Aug. 15, 2023. [Online]. Available: https://grantome.com/grant/NIH/R21-AT001301-02 Wada Y, Hasegawa H, Nakamura M, Yamaguchi N (1992) Anticonvulsant effect of allopurinol on hippocampal-kindled seizures. Pharmacol Biochem Behav 42(4):899–901. https://doi.org/10.1016/0091-3057(92)90046-I Brunstein MG, Ghisolfi ES, Ramos FLP, Lara DR (2005) A clinical trial of adjuvant allopurinol therapy for moderately refractory schizophrenia. J Clin Psychiatry 66(2):213–219. https://doi.org/10.4088/JCP.V66N0209 Dickerson FB et al (2009) A double-blind trial of adjunctive allopurinol for schizophrenia. Schizophr Res 109(1–3):66–69. https://doi.org/10.1016/j.schres.2008.12.028 Buie LW, Oertel MD, Cala SO (2006) Allopurinol as adjuvant therapy in poorly responsive or treatment refractory schizophrenia. Ann Pharmacother 40(12):2200–2204. https://doi.org/10.1345/aph.1H222 Weiser M et al (2012) A randomized controlled trial of allopurinol vs. placebo added on to antipsychotics in patients with schizophrenia or schizoaffective disorder. Schizophr Res 138(1):35–38. https://doi.org/10.1016/j.schres.2012.02.014 Lara DR, Cruz MRS, Xavier F, Souza DO, Moriguchi EH (2003) Allopurinol for the treatment of aggressive behaviour in patients with dementia. Int Clin Psychopharmacol 18(1):53–55. https://doi.org/10.1097/00004850-200301000-00009 Lara DR, Belmonte-de-Abreu P, Souza DO (2000) Allopurinol for refractory aggression and self-inflicted behaviour. J Psychopharmacol 14(1):81–83. https://doi.org/10.1177/026988110001400112 Machado-Vieira R, Lara DR, Souza DO, Kapczinski F (2001) Therapeutic efficacy of allopurinol in mania associated with hyperuricemia. J Clin Psychopharmacol 21(6):621–622. https://doi.org/10.1097/00004714-200112000-00017 Weiser M et al (2014) Allopurinol for mania: a randomized trial of allopurinol versus placebo as add-on treatment to mood stabilizers and/or antipsychotic agents in manic patients with bipolar disorder. Bipolar Disord 16(4):441–447. https://doi.org/10.1111/bdi.12202