The impact of individual-level heterogeneity on estimated infectious disease burden: a simulation study
Population Health Metrics - 2016
Tóm tắt
Disease burden is not evenly distributed within a population; this uneven distribution can be due to individual heterogeneity in progression rates between disease stages. Composite measures of disease burden that are based on disease progression models, such as the disability-adjusted life year (DALY), are widely used to quantify the current and future burden of infectious diseases. Our goal was to investigate to what extent ignoring the presence of heterogeneity could bias DALY computation. Simulations using individual-based models for hypothetical infectious diseases with short and long natural histories were run assuming either “population-averaged” progression probabilities between disease stages, or progression probabilities that were influenced by an a priori defined individual-level frailty (i.e., heterogeneity in disease risk) distribution, and DALYs were calculated. Under the assumption of heterogeneity in transition rates and increasing frailty with age, the short natural history disease model predicted 14% fewer DALYs compared with the homogenous population assumption. Simulations of a long natural history disease indicated that assuming homogeneity in transition rates when heterogeneity was present could overestimate total DALYs, in the present case by 4% (95% quantile interval: 1–8%). The consequences of ignoring population heterogeneity should be considered when defining transition parameters for natural history models and when interpreting the resulting disease burden estimates.
Từ khóa
Tài liệu tham khảo
Vaupel JW, Manton KG, Stallard E. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography. 1979;16:439–54.
Aalen OO. Effects of frailty in survival analysis. Stat Methods Med Res. 1994;3:227–43.
Aalen OO, Valberg M, Grotmol T, Tretli S. Understanding variation in disease risk: the elusive concept of frailty. Int J Epidemiol. 2014;44:1408–21.
Alter G, Riley JC. Frailty, sickness, and death: models of morbidity and mortality in historical populations. Popul Stud (Camb). 1989;43:25–45.
Moger TA, Aalen OO, Halvorsen TO, Storm HH, Tretli S. Frailty modelling of testicular cancer incidence using Scandinavian data. Biostatistics. 2004;5:1–14.
Kuntz KM, Goldie SJ. Assessing the sensitivity of decision-analytic results to unobserved markers of risk: defining the effects of heterogeneity bias. Med Decis Making. 2002;22:218–27.
Zaric GS. The impact of ignoring population heterogeneity when Markov models are used in cost-effectiveness analysis. Med Decis Making. 2003;23:379–96.
Havelaar AH, Van Duynhoven YT, Nauta MJ, Bouwknegt M, Heuvelink AE, De Wit GA, Nieuwenhuizen MG, van de Kar NC. Disease burden in The Netherlands due to infections with Shiga toxin-producing Escherichia coli O157. Epidemiol Infect. 2004;132:467–84.
Ioannidis JP, Cappelleri JC, Schmid CH, Lau J. Impact of epidemic and individual heterogeneity on the population distribution of disease progression rates. An example from patient populations in trials of human immunodeficiency virus infection. Am J Epidemiol. 1996;144:1074–85.
Mangen MJ, Plass D, Havelaar AH, Gibbons CL, Cassini A, Muhlberger N, van Lier A, Haagsma JA, Brooke RJ, Lai T, et al. The pathogen- and incidence-based DALY approach: an appropriate [corrected] methodology for estimating the burden of infectious diseases. PLoS One. 2013;8:e79740.
Plass D, Mangen MJ, Kraemer A, Pinheiro P, Gilsdorf A, Krause G, Gibbons CL, van Lier A, McDonald SA, Brooke RJ, et al. The disease burden of hepatitis B, influenza, measles and salmonellosis in Germany: first results of the burden of communicable diseases in Europe study. Epidemiol Infect. 2014;142:2024–35.
van Lier EA, Havelaar AH, Nanda A. The burden of infectious diseases in Europe: a pilot study. Euro Surveill. 2007;12:E3–4.
Statistics Netherlands (CBS). Life expectancy; sex and age, from 1950 [Levensverwachting; geslacht en leeftijd, vanaf 1950]. Voorburg, NL: CBS; 2011. http://statline.cbs.nl/.
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.
Verbrugge LM. Longer life but worsening health? Trends in health and mortality of middle-aged and older persons. Milbank Mem Fund Q Health Soc. 1984;62:475–519.
Ginaldi L, Loreto MF, Corsi MP, Modesti M, De Martinis M. Immunosenescence and infectious diseases. Microbes Infect. 2001;3:851–7.