The impact of Lithium on thyroid function in Chinese psychiatric population

Thyroid Research - Tập 8 - Trang 1-8 - 2015
Kwan Yee Queenie Tsui1
1Department of Psychiatry, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China

Tóm tắt

Lithium was known to cause thyroid dysfunction and most commonly subclinical hypothyroidism (SCH). The aim of this study is to determine the prevalence of Lithium associated thyroid dysfunction and to identify risk factors associated with development of SCH in patients receiving Lithium. A retrospective cross-sectional study was conducted. Subjects who developed elated thyroid stimulating hormone (TSH) were compared with those who remained euthyroid with Lithium treatment. Logistic regression and survival analysis were applied to identify the significant factors associated with SCH. The prevalence of Lithium associated with SCH was 31.7 %. The significant risk factors associated with increased risk of SCH included being female, higher serum Lithium level, concomitant use of Valproate Sodium and use of antidepressant. Use of depot injection was associated with decreased risk of SCH. Use of depot and avoidance of Valproate or antidepressant should be taken into account before starting patient on Lithium treatment. Thyroxine replacement should be considered when Lithium associated SCH was identified.

Tài liệu tham khảo

Melvin GM. Lithium for bipolar disorder: a re-emerging treatment for mood instability. Curr Psychiatry. 2014;13(6):38–44. Lazarus JH. The effects of lithium therapy on thyroid and thyrotropin-releasing hormone. Thyroid. 1998;8(10):909–13. Fagiolini A, Kupfer DJ, Scott J, Swartz HA, Cook D, Novick DM, et al. Hypothyroidism in patients with bipolar I disorder treated primarily with lithium. Epidemiol Psychiatr Soc. 2006;15(2):123–7. Johnston AM, Eagles JM. Lithium associated clinical hypothyroidism: prevalence and risk factors. Br J Psychiatry. 1999;175:336–9. Choi HM, Chang JS, Kim J, Kim JH, Choi JE, Ha TH, et al. Subclinical hypothyroidism in patients with bipolar disorders managed by lithium or valproic acid. Korean J Biol Psychiatry. 2013;20(4):151–8. Korean. Bocchetta A, Cocco F, Velluzzi F, Del-Zompo M, Mariotti S, Loviselli A. Fifteen-year follow-up of thyroid function in lithium patients. J Endocrinol Invest. 2007;30(5):363–6. Kirov G, Tredget J, John R, Owen MJ, Lazarus JH. A cross-sectional and a prospective study of thyroid disorders in lithium-treated patients. J Affect Disord. 2005;87(2–3):313–7. doi:10.1016/j.jad.2005.03.010. Furlanetto TW, Nunes Jr RB, Sopelsa AM, Maciel RM. Estradiol decreases iodide uptake by rat thyroid follicular FRTL-5 cells. Braz J Med Biol Res. 2001;34(2):259–63. Bahrami Z, Hedayati M, Taghikhani M, Azizi F. Effect of testosterone on thyroid weight and function in iodine deficient castrated rats. Horm Metab Res. 2009;41(10):762–6. doi:10.1055/s-0029-1225629. Epub 2009 Jul. Tellian FF, Rueda-Vasquez E. Effect of serum lithium levels on thyrotropin levels. South Med J. 1993;86(10):1182–3. Gracious BL, Findling RL, Seman C, Youngstrom EA, Demeter CA, Calabrese JR. Elevated thyrotropin in bipolar youths prescribed both lithium and divalproex sodium. J Am Acad Child Adolesc Psychiatry. 2004;43(2):215–20. doi:10.1097/00004583-200402000-00018. Bunevicius R, Steibliene V, Prange Jr AJ. Thyroid axis function after in-patient treatment of acute psychosis with antipsychotics: a naturalistic study. BMC Psychiatry. 2014;14:279. doi:10.1186/s12888-014-0279-7. Barnes TR, Curson DA. Long-term depot antipsychotics. A risk-benefit assessment. Drug Saf. 1994;10(6):464–79. Jerome MH, Kim SH, Chung HR, Kim SH, Kim H, Lim BC, et al. Valproic acid therapy causes subclinical hypothyroidism in children with epilepsy. Clin Thyroidol. 2012;24:15–6. Loscher W, Schmidt D. Increase of human plasma GABA by sodium valproate. Epilepsia. 1980;21(6):611–5. Wiens SC, Trudeau VL. Thyroid hormone and gamma-aminobutyric acid (GABA) interactions in neuroendocrine systems. Comp Biochem Physiol A Mol Integr Physiol. 2006;144(3):332–44. doi:10.1016/j.cbpa.2006.01.033. Gean PW, Huang CC, Hung CR, Tsai JJ. Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices. Brain Res Bull. 1994;33(3):333–6. Alfonso M, Duran R, Arufe MC. Effect of excitatory amino acids on serum TSH and thyroid hormone levels in freely moving rats. Horm Res. 2000;54(2):78–83. Eker SS, Akkaya C, Sarandol A. Effects of various antidepressants on serum thyroid hormone levels in patients with major depressive disorder. Neuropsychopharmacol Biol Psychiatry. 2008;32(4):955Y961. Brady KT, Anton RF. The thyroid axis and desipramine treatment in depression. Biol Psychiatry. 1989;25(6):703–9. Alessio S, Guglielmo B, Nicola M. Chronic peripheral administration of serotonin inhibits thyroid function in the rat. Muscles Ligaments Tendons J. 2011;1(2):48–50. Calabrese JR, Gulledge AD, Hahn K, Skwerer R, Kotz M, Schumacher OP, et al. Autoimmune thyroiditis in manic-depressive patients treated with lithium. Am J Psychiatry. 1985;142(11):1318–21. Josephson AM, Mackenzie TB. Thyroid-induced mania in hypothyroid patients. Br J Psychiatry. 1980;137:222–8.