The impact of LRBF-FD on the solutions of the nonlinear regularized long wave equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ablowitz, M.J., Ablowitz, M., Clarkson, P., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149. Cambridge University Press, Cambridge (1991)
Nagashima, H.: Experiment on solitary waves in the nonlinear transmission line described by the equation (remark: Graphics omitted.). J. Phys. Soc. Jpn. 47(4), 1387 (1979)
Jeffrey, A., Xu, S.: Travelling wave solutions to certain non-linear evolution equations. Int. J. Non Linear Mech. 24(5), 425 (1989)
Kakutani, T., Ono, H.: Weak non-linear hydromagnetic waves in a cold collision-free plasma. J. Phys. Soc. Jpn. 26(5), 1305 (1969)
Wang, M., Li, X., Zhang, J.: The (G$$^\prime $$ G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417 (2008)
Mohanty, R., Gopal, V.: High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations. Appl. Math. Comput. 218(8), 4234 (2011)
Garshasbi, M., Khakzad, M.: The RBF collocation method of lines for the numerical solution of the CH-$$\gamma $$ equation. J. Adv. Res. Dyn. Cont. Syst. 4, 65–83 (2015)
Mohanty, R.K., Khurana, G.: A new high accuracy cubic spline method based on half-step discretization for the system of 1D non-linear wave equations. Eng. Comput. 36(3), 930 (2019)
Dehghan, Z., Rashidinia, J.: Solution of Kawahara equation using a predictor-and RBF-QR method. J. Math. Model. (2020). https://doi.org/10.22124/JMM.2020.17221.1497
Mokhtari, R., Mohammadi, M.: Numerical solution of GRLW equation using Sinc-collocation method. Comput. Phys. Commun. 181(7), 1266 (2010)
Haq, S., Ali, A., et al.: A meshfree method for the numerical solution of the RLW equation. J. Comput. Appl. Math. 223(2), 997 (2009)
Abdulloev, K.O., Bogolubsky, I., Makhankov, V.G.: One more example of inelastic soliton interaction. Phys. Lett. A 56(6), 427 (1976)
Bona, J., Bryant, P.J.: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 73, pp. 391–405. Cambridge University Press, Cambridge (1973)
Na, S.: New exact travelling wave solutions for the Kawahara and modified Kawahara equations. Chaos Solitons Fractals 19(1), 147 (2004)
Yamamoto, Y., Takizawa, É.I.: On a solution on non-linear time-evolution equation of fifth order. J. Phys. Soc. Jpn. 50(5), 1421 (1981)
Yusufoğlu, E., Bekir, A., Alp, M.: Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method. Chaos Solitons Fractals 37(4), 1193 (2008)
Korkmaz, A., Dağ, İ.: Numerical simulations of boundary-forced RLW equation with cubic B-spline-based differential quadrature methods. Arab. J. Sci. Eng. 38(5), 1151 (2013)
Esen, A., Kutluay, S.: Application of a lumped Galerkin method to the regularized long wave equation. Appl. Math. Comput. 174(2), 833 (2006)
Saka, B., Dag, I.: A collocation method for the numerical solution of the RLW equation using cubic B-spline basis. Arab. J. Sci. Eng. 30(1A), 39 (2005)
Saka, B., Dağ, İ., Doğan, A.: Galerkin method for the numerical solution of the RLW equation using quadratic B-splines. Int. J. Comput. Math. 81(6), 727 (2004)
Dag, I., Dogan, A., Saka, B.: B-spline collocation methods for numerical solutions of the RLW equation. Int. J. Comput. Math. 80(6), 743 (2003)
Dağ, İ., Saka, B., Irk, D.: Galerkin method for the numerical solution of the RLW equation using quintic B-splines. J. Comput. Appl. Math. 190(1–2), 532 (2006)
Franke, C., Schaback, R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8(4), 381 (1998)
Madych, W., Nelson, S.: Multivariate interpolation and conditionally positive definite functions. II. Math. Comput. 54(189), 211 (1990)
Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905 (1971)
Kansa, E.J.: Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-i surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127 (1990)
Kansa, E., Hon, Y.: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput. Math. Appl. 39(7–8), 123 (2000)
Tolstykh, A., Shirobokov, D.: On using radial basis functions in a “finite difference model” with applications to elasticity problems. Comput. Mech. 33(1), 68 (2003)
Abbaszadeh, M., Dehghan, M.: Reduced order modeling of time-dependent incompressible Navier–Stokes equation with variable density based on a local radial basis functions-finite difference (LRBF-FD) technique and the POD/DEIM method. Comput. Methods Appl. Mech. Eng. 364, 112914 (2020)
Dehghan, M., Shafieeabyaneh, N.: Local radial basis function-finite-difference method to simulate some models in the nonlinear wave phenomena: regularized long-wave and extended Fisher-Kolmogorov equations. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00877-z
Dehghan, M., Abbaszadeh, M.: The meshless local collocation method for solving multi-dimensional Cahn–Hilliard, Swift–Hohenberg and phase field crystal equations. Eng. Anal. Bound. Elem. 78, 49 (2017)
Nikan, O., Golbabai, A., Nikazad, T.: Solitary wave solution of the nonlinear KdV–Benjamin–Bona–Mahony–Burgers model via two meshless methods. Eur. Phys. J. Plus 134(7), 367 (2019)
Avazzadeh, Z., Nikan, O., Machado, J.A.T.: Solitary wave solutions of the generalized Rosenau–KdV–RLW equation. Mathematics 8(9), 1601 (2020)
Can, N.H., Nikan, O., Rasoulizadeh, M.N., Jafari, H., Gasimov, Y.S.: Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Therm. Sci. 24(Suppl. 1), 49 (2020)
Nikan, O., Avazzadeh, Z., Machado, J.T.: Numerical investigation of fractional nonlinear sine-Gordon and Klein–Gordon models arising in relativistic quantum mechanics. Eng. Anal. Bound. Elem. 120, 223 (2020)
Nikan, O., Machado, J., Avazzadeh, Z., Jafari, H.: Numerical evaluation of fractional Tricomi-type model arising from physical problems of gas dynamics. J. Adv. Res. 25, 205 (2020)
Nikan, O., Machado, J.T., Golbabai, A.: Numerical solution of time-fractional fourth-order reaction–diffusion model arising in composite environments. Appl. Math. Model. 89, 819 (2021)
Rashidinia, J., Rasoulizadeh, M.N.: Numerical methods based on radial basis function-generated finite difference (RBF-FD) for solution of GKdVB equation. Wave Motion 90, 152 (2019)
Rasoulizadeh, M.N., Rashidinia, J.: Numerical solution for the Kawahara equation using local RBF-FD meshless method. J. King Saud Univ. Sci. 32, 2277 (2020)
Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge University Press, Cambridge (2003)
Olver, P.J.: In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 85, pp. 143–160. Cambridge University Press (1979)
Shechter, G.: Matlab package kd-tree (2004)
