The impact of 5G on the evolution of intelligent automation and industry digitization
Tóm tắt
Từ khóa
Tài liệu tham khảo
ABI Research (2016) Driving the IoT journey: 10 trends to watch. Retrieved April 25, 2018. from file:///E:/The%20Internet%20of%20Things/ABI%20Research%20Driving%20Your%20IoT%20ourney.pdf
Akyildiz IF, Nie S, Lin SC, Chandrasekaran M (2014) 5G roadmap: 10 key enabling technologies. Comput Netw 106:17–48
Ali H, Zhai X, Tariq UU, Liu L (2018a) Energy efficient heuristic algorithm for task mapping on shared-memory heterogeneous MPSoCs. In: IEEE. 20th International Conference on high performance computing and communications. June 28–30. Exeter, United Kingdom, pp 1099–1104
Ali H, Tariq UU, Zhai X, Liu L (2018b) Energy efficient task mapping & scheduling on heterogeneous NoC-MPSoCs in IoT based Smart City. In: IEEE 20th International Conference on high performance computing and communications. June 28–30. Exeter, United Kingdom, pp 1305–1313
Ali H, Zhai X, Tariq UU, Panneerselvan J, Liu L (2019) Energy optimization of streaming applications in IoT on NoC based heterogeneous MPSoCs using re-timing and DVFS. In: IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation. August 19–23. Leicester, United Kingdom
NGMN Alliance (2017) 5G ehite paper. Retrieved June 14, 2019, from https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf
Amaral LA, de Matos E, Tiburski RT, Hessel F, Lunardi WT, Marczak S (2016) Middleware technology for IoT systems: challenges and perspectives toward 5G. In: Mavromoustakis C, Mastorakis G, Batalla J (eds) Internet of Things (IoT) in 5G mobile technologies. Springer International Publishing, Cham, pp 333–367
Arbib J, Seba T (2017) Rethinking Transportation 2020-2030. Retrieved May 14, 2019, https://static1.squarespace.com/static/585c3439be65942f022bbf9b/t/591a2e4be6f2e1c13df930c5/1509063152647/RethinkX+Report_051517.pdf
Attaran M (2017a) The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus Horizons 60(5):677–688
Attaran M (2017b) The Internet of things: limitless opportunities for business and society. J Strat Innov Sustain 12(1):10–29
Barreto AN, Faria B, Almeida E, Rodriguez I, Lauridsen M, Amorim R, Vieira R (2016) 5G-wireless communications for 2020. J Commun Inf Syst 31:146–163
Bhalla MR, Bhalla AV (2010).Generations of mobile wireless technology: a survey. Int J Comput Appl 5(4): 26–32. Retrieved June 9, 2019, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.5216&rep=rep1&type=pdf
Blanco B, Fajardo HO, Giannis I, Kafetzakis E, Pneg S, Perez-Romero J, Trajkovska I, Khodashenas PS, Goratti L, Paolino M (2017) Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN. Comput Stand Interfaces. 54:216–228
Bogale TE, Le LB (2015) Massive MIMO and mmWave for 5G wireless HetNet: potential benefits and challenges. IEEE Veh Technol Mag 11:64–75
Cero E, Baraković Husić J, Baraković S (2017) IoT’s tiny steps towards 5G: telco’s perspective. Symmetry 9:1–38
China Daily (2019) China performs the first 5G-based remote surgery on the human brain. March 18. Retrieved July 30, 2019, from http://www.chinadaily.com.cn/a/201903/18/WS5c8f0528a3106c65c34ef2b6.html
Cisco (2019) Cisco visual networking index: forecast and trends, 2017–2022 White paper. Retrieved June 10, 2019, from https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
Condon S (2017) Report: By 2035, 20 percent of 5G’s economic impact will be in automotive. Between the Lines, May 3. Retrieved June 24, 2019, from https://www.zdnet.com/article/report-by-2035-20-percent-of-5gs-economic-impact-will-be-in-automotive/
De Matos WD, Gondim PRLM (2016) Health solutions using 5G networks and M2M communications. IT Prof. 18:24–29
Elayoubi SE, Fallgren M, Spapis P, Zimmermann G, Martín-Sacristán D, Yang C, Jeux S, Agyapong P, Campoy L, Qi Y (2016) 5G service requirements and operational use cases: analysis and METIS II vision. In: Proceedings of the 2016 European Conference on networks and communications (EuCNC), Athens, Greece, 27–30 June
Ericsson (2017) The 5G business potential. Second Edition. October. Retrieved May 24, 2019, from https://www.economiadehoy.es/adjuntos/19430/Ericsson-5G-business-potential-report.pdf
Ericsson (2018) The Industry impact of 5G. Retrieved June 10, 2019, from https://www.economiadehoy.es/adjuntos/19430/Ericsson-5G-business-potential-report.pdf
Ericsson (2019) 5G for manufacturing. Retrieved June 17, 2019, from https://www.ericsson.com/en/networks/trending/insights-and-reports/5g-for-manufacturing
Erman B, Yiu S (2016) Modeling 5G wireless network service reliability predictions with the Bayesian network. In: Proceedings of the 2016 IEEE International Workshop Technical Committee on communications quality and reliability, Stevenson, WA, USA, 10–12 May
Evans D (2011) The Internet of Things: how the next evolution of the Internet is changing everything. April. Cisco Internet Business Solutions Group. Retrieved May 24, 2019, from https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
Ford R, Zhang M, Mezzavilla M, Duttam S, Rangap S, Zorzi M (2017) Achieving ultra-low latency in 5G millimeter wave cellular networks. IEEE Commun Manag 55:196–203
G Forum (2016) 5G vision, requirements, and rnabling technologies. Retrieved June 14, 2019, from http://kani.or.kr/5g/whitepaper/5G%20Vision,%20Requirements,%20and%20Enabling%20Technologies.pdf
Gantz J, Reinsel D (2012) The digital universe in 2020: Big data, bigger digital shadow s, and biggest growth in the far east. IDC Iview. Retrieved August 02, 2019, from https://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
Gartner (2017) Gartner end-user survey finds three-quarters of respondents are willing to pay more for 5G. August 9. Retrieved May 14, 2019, from https://www.gartner.com/en/newsroom/press-releases/2017-08-09-gartner-end-user-survey-finds-three-quarters-of-respondents-are-willing-to-pay-more-for-5g
Ge X, Chen J, Ying S, Chen M (2016) Energy and coverage efficiency trade-off in 5G small cell network. IEEE Trans Green Commun Netw XX(Y):1–28
GSMA (2017) The5G era: age of boundless connectivity and intelligent automation. GSM Association. Retrieved May 14, 2019, from https://www.gsmaintelligence.com/research/?file=0efdd9e7b6eb1c4ad9aa5d4c0c971e62&download
Hale Z (2019) How ERP data analytics improve predictive maintenance. February 20. Retrieved May 14, 2019, from https://www.softwareadvice.com/resources/predictive-maintenance-data-analytics/
Hossain S (2013) 5G wireless communication systems. Am J Eng Res 2:344–353
Hu F (2016) 5G overview: key technologies. In: Hu F (ed) Opportunities in 5G Networks, 1st edn. CRC Press, Boca Raton, pp 1–557
DBS Asian Insights (2018) Internet of Things- The pillar of artificial intelligence. DBS Group Research. Retrieved May 22, 2018, from file:///E:/Blockchain-Book/180625_insights_internet_of_things_the_pillar_of_artificial_intelligence.pdf
i-SCOOP (2018) 5G and IoT: the mobile broadband future of IoT. Retrieved May 14, 2019. https://www.i-scoop.eu/internet-of-things-guide/5g-iot/
Kamel M, Hamouda W, Youssef A (2016) Ultra-dense networks: a survey. IEEE Commun Surv Tutor 18:2522–2545
Kaur S, Singh I (2016) A survey report on Internet of Things applications. Int J Comput Sci Trends Technol 4:330–335
Ken’s Tech Tips (2018) Download speeds: what do 2G, 3G, 4G & 5G actually mean? November 23. Retrieved May 24, 2019, from https://kenstechtips.com/index.php/download-speeds-2g-3g-and-4g-actual-meaning#2G_3G_4G_5G_Download_Speeds
Larsson EG, Edfors O, Tufvesson F, Marzetta TL (2014) A massive MIMO for next-generation wireless systems. IEEE Commun Mag 52:186–195
Le LB, Lau V, Jorswieck E, Dao ND, Haghighat A, Kim DI, Le-Ngoc T (2015) Enabling 5G mobile wireless technologies. J Wirel Com Netw. https://doi.org/10.1186/s13638-015-0452-9
Li S, Xu LD, Zhao S (2018) 5G Internet of Things: a survey. Journal of Industrial Information Integration. February 19. Retrieved May 24, 2019, from https://pdfs.semanticscholar.org/b305/d424a5d590ff7fff8e6d0bbf4f2767146423.pdf
Liu G, Jiang D (2016) 5G: vision and requirements for mobile communication system towards the year 2020. Chin J Eng. https://doi.org/10.1155/2016/5974586
Lyft Blog (2019) One year in, 50,000 self-driving rides later. May 31. Retrieved June 14, 2019, from https://blog.lyft.com/posts/2019/5/30/one-year-in-50000-self-driving-rides-later
Market Watch (2016) Internet of Things (IoT) healthcare market is expected to reach $136.8 billion worldwide by 2021. Retrieved June 14, 2019, from https://www.marketwatch.com/press-release/internet-of-things-iot-healthcare-market-is-expected-to-reach-1368-billion-worldwide-by-2021-2016-04-12-8203318
Marr B (2018) Why the Internet of Medical Things (IoMT) will start to transform healthcare In 2018. Forbs, January 25. Retrieved June 14, 2019, from https://www.forbes.com/sites/bernardmarr/2018/01/25/why-the-internet-of-medical-things-iomt-will-start-to-transform-healthcare-in-2018/#523c742c4a3c
Mathias C (2019) Wi-Fi 6 vs. 5G networks is more about cooperation than competition. TechTarget. April. Retrieved June 14, 2019, from https://searchnetworking.techtarget.com/tip/Wi-Fi-6-vs-5G-networks-is-more-about-cooperation-than-competition
McKinsey & Company (2016) Automotive revolution—perspective towards 2030. Retrieved June 24, 2019, from https://www.mckinsey.com/~/media/mckinsey/industries/high%20tech/our%20insights/disruptive%20trends%20that%20will%20transform%20the%20auto%20industry/auto%202030%20report%20jan%202016.ashx
Mishra AR (2018) Fundamentals of network planning and optimization 2G/3G/4G: evolution to 5G, 2nd edn. Wiley, New York (ISBN: 9781119331711)
Mogg T (2019) Lyft’s Robo-taxis have made more than 50,000 rides in Las Vegas. June 06. Retrieved June 14, 2019, from https://www.digitaltrends.com/cars/lyfts-robo-taxis-have-made-more-than-50000-rides-in-las-vegas/
Niu Y, Li Y, Jin D, Su L, Vasilakos AV (2016) A survey of millimeter-wave communications (Mmwave) for 5G: opportunities and challenges. Wirel Netw 21:2657–2676
Obiodu E, Giles M (2017) The 5G era: age of boundless connectivity and intelligent automation. GSM Association. Retrieved May 24, 2019, from https://www.gsma.com/latinamerica/wp-content/uploads/2018/08/2017-02-27-0efdd9e7b6eb1c4ad9aa5d4c0c971e62.pdf
Omale G (2018) Gartner survey reveals two-thirds of organizations Intend to deploy 5G by 2020. Gartner. December 18, Retrieved May 14, 2019, from https://www.gartner.com/en/newsroom/press-releases/2018-12-18-gartner-survey-reveals-two-thirds-of-organizations-in
Opentechdiary (2015) Internet of Things world Europe. Retrieved from: https://opentechdiary.wordpress.com/2015/07/16/a-walk-through-internet-of-things-iot-basics-part-2/
Oughton EJ, Frias Z (2017) Exploring the cost, coverage, and rollout implications of 5G in Britain. Retrieved May 24, 2019, from http://www.itrc.org.uk/wp-content/uploads/Exploring-costs-of-5G.pdf
Pathak S (2013) Evolution in generations of cellular mobile communication. Master of Science in Cyber Law and Information Security. Project report on Telecommunication and network security on “Evolution in generations of cellular mobile communication.” Retrieved June 14, 2019, from https://www.academia.edu/5742206/Evolution_of_generations_from_0G_to_4G
Phifer L (2017) What’s the difference between licensed and unlicensed wireless? TechTarget. September. Retrieved June 14, 2019, from https://searchnetworking.techtarget.com/answer/Whats-the-difference-between-licensed-and-unlicensed-wireless
Rappaport TS, Daniels RC, Heath RW, Murdock JN (2014) Introduction. In: Millimeter wave wireless communication. Pearson Education, Upper Saddle River, NJ, USA (ISBN-13: 978-0-13-217228-8)
Rossi R, Hirama IL (2015) Characterizing big data management. Issues Inf Sci Inf Technol 12:165–180
Saha RK, Saengudomlert P, Aswakul C (2016) Evolution towards 5G mobile networks—a survey on enabling technologies. Eng J 20(1):87–112
Sears SW (1977) The American heritage history of the automobile in America, 1st edn. Scribner (Simon & Schuster), New York, NY (ISBN-13: 978-0671229863)
Tariq UU, Ali H, Liu L, Panneerselvan J, Zhai X (2019) Energy-efficient static task scheduling on VFI-based NoC-HMPSoCs for intelligent edge devices in cyber-physical systems. ACM Trans Intell Syst Technol 66:22
World Economic Forum (2015) Reinventing the wheel: digital transformation in the automotive industry. Retrieved June 14, 2019, from http://reports.weforum.org/digital-transformation/reinventing-the-wheel/
Zhang Q, Fitzek FHP (2015) Mission critical IoT communication in 5G. In: Future access enablers for ubiquitous and intelligent infrastructures, vol.159. Springer International Publishing. Cham, Switzerland, pp 35–41