The immunobiology of schistosomiasis

Nature Reviews Immunology - Tập 2 Số 7 - Trang 499-511 - 2002
Edward J. Pearce1, Andrew S. MacDonald1
1Department of Pathobiology, University of Pennsylvania, Philadelphia, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

van der Werf, M. J. et al. Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Tropica (in the press).A comprehensive assessment of the true impact of schistosomiasis on human health.

Dunne, D. W. & Pearce, E. J. Immunology of hepatosplenic schistosomiasis mansoni: a human perspective. Microbes Infect. 1, 553–560 (1999).

Cheever, A. W., Hoffmann, K. F. & Wynn, T. A. Immunopathology of schistosomiasis mansoni in mice and men. Immunol. Today 21, 465–466 (2000).

Rabello, A. Acute human schistosomiasis mansoni. Mem. Inst. Oswaldo Cruz 90, 277–280 (1995).

de Jesus, A. R. et al. Clinical and immunologic evaluation of 31 patients with acute schistosomiasis mansoni. J. Infect. Dis. 185, 98–105 (2002).

Montenegro, S. M. et al. Cytokine production in acute versus chronic human schistosomiasis mansoni: the cross-regulatory role of interferon-γ and interleukin-10 in the responses of peripheral blood mononuclear cells and splenocytes to parasite antigens. J. Infect. Dis. 179, 1502–1514 (1999).

King, C. L. et al. B-cell sensitization to helminthic infection develops in utero in humans. J. Immunol. 160, 3578–3584 (1998).

Malhotra, I. et al. In utero exposure to helminth and mycobacterial antigens generates cytokine responses similar to that observed in adults. J. Clin. Invest. 99, 1759–1766 (1997).

Brunet, L. R., Finkelman, F. D., Cheever, A. W., Kopf, M. A. & Pearce, E. J. IL-4 protects against TNF-α-mediated cachexia and death during acute schistosomiasis. J. Immunol. 159, 777–785 (1997).The first paper to show that the T H 2 response that is induced during schistosomiasis is essential for host survival.

Fallon, P. G., Richardson, E. J., McKenzie, G. J. & McKenzie, A. N. Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J. Immunol. 164, 2585–2591 (2000).

La Flamme, A. C., Patton, E. A., Bauman, B. & Pearce, E. J. IL-4 plays a crucial role in regulating oxidative damage in the liver during schistosomiasis. J. Immunol. 166, 1903–1911 (2001).

Hatz, C. F. The use of ultrasound in schistosomiasis. Adv. Parasitol. 48, 225–284 (2001).

Jankovic, D. et al. Schistosome-infected IL-4 receptor knockout (KO) mice, in contrast to IL-4 KO mice, fail to develop granulomatous pathology while maintaining the same lymphokine expression profile. J. Immunol. 163, 337–342 (1999).

Chiaramonte, M. G., Donaldson, D. D., Cheever, A. W. & Wynn, T. A. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type-2-dominated inflammatory response. J. Clin. Invest. 104, 777–785 (1999).This report established IL-13 as a profibrogenic mediator in schistosomiasis, and it describes a rationally designed experimental immunotherapy that blocks fibrosis.

Modolell, M., Corraliza, I. M., Link, F., Soler, G. & Eichmann, K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone-marrow-derived macrophages by TH1 and TH2 cytokines. Eur. J. Immunol. 25, 1101–1104 (1995).

Hesse, M., Cheever, A. W., Jankovic, D. & Wynn, T. A. NOS-2 mediates the protective anti-inflammatory and antifibrotic effects of the TH1-inducing adjuvant, IL-12, in a TH2 model of granulomatous disease. Am. J. Pathol. 157, 945–955 (2000).

Lee, C. G. et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor-β1. J. Exp. Med. 194, 809–821 (2001).

Hesse, M. et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of l-arginine metabolism. J. Immunol. 167, 6533–6544 (2001).

Mohamed-Ali, Q. et al. Susceptibility to periportal (Symmers) fibrosis in human Schistosoma mansoni infections: evidence that intensity and duration of infection, gender and inherited factors are critical in disease progression. J. Infect. Dis. 180, 1298–1306 (1999).

Dessein, A. J. et al. Severe hepatic fibrosis in Schistosoma mansoni infection is controlled by a major locus that is closely linked to the interferon-γ receptor gene. Am. J. Hum. Genet. 65, 709–721 (1999).Severe schistosomiasis occurs in less than 10% of infected individuals. This report is an important step towards understanding the genetic predispostion to severe disease.

Araujo, M. I. et al. Evidence of a T helper type-2 activation in human schistosomiasis. Eur. J. Immunol. 26, 1399–1403 (1996).

Williams, M. E. et al. Leukocytes of patients with Schistosoma mansoni respond with a TH2 pattern of cytokine production to mitogen or egg antigens, but with a TH0 pattern to worm antigens. J. Infect. Dis. 170, 946–954 (1994).

Mwatha, J. K. et al. High levels of TNF, soluble TNF receptors, soluble ICAM-1, and IFN-γ, but low levels of IL-5, are associated with hepatosplenic disease in human schistosomiasis mansoni. J. Immunol. 160, 1992–1999 (1998).

Dessein, A. J. et al. Infection and disease in human schistosomiasis mansoni are under distinct major gene control. Microbes Infect. 1, 561–567 (1999).

Montesano, M. A., Colley, D. G., Willard, M. T., Freeman, G. L. Jr & Secor, W. E. Idiotypes expressed early in experimental Schistosoma mansoni infections predict clinical outcomes of chronic disease. J. Exp. Med. 195, 1223–1228 (2002).

Bosshardt, S. C., Freeman, G. L. Jr, Secor, W. E. & Colley, D. G. IL-10 deficit correlates with chronic, hypersplenomegaly syndrome in male CBA/J mice infected with Schistosoma mansoni. Parasite Immunol. 19, 347–353 (1997).

Montesano, M. A., Colley, D. G., Eloi-Santos, S., Freeman, G. L. Jr & Secor, W. E. Neonatal idiotypic exposure alters subsequent cytokine, pathology and survival patterns in experimental Schistosoma mansoni infections. J. Exp. Med. 189, 637–645 (1999).

Hoffmann, K. F., Cheever, A. W. & Wynn, T. A. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J. Immunol. 164, 6406–6416 (2000).This study establishes the immunological requirements for minimizing disease during the acute and chronic phases of schistosomiasis.

Vaillant, B., Chiaramonte, M. G., Cheever, A. W., Soloway, P. D. & Wynn, T. A. Regulation of hepatic fibrosis and extracellular matrix genes by the TH response: new insight into the role of tissue inhibitors of matrix metalloproteinases. J. Immunol. 167, 7017–7026 (2001).

King, C. L. et al. Schistosoma haematobium-induced urinary-tract morbidity correlates with increased tumor-necrosis factor-α and diminished interleukin-10 production. J. Infect. Dis. 184, 1176–1182 (2001).

Colley, D. G. In Idiotypic Network and Diseases (eds Cerney, J. & Hiernauz, J.) 71–105 (American Society for Microbiology, Washington DC, 1990).

King, C. L. et al. Cytokine control of parasite-specific anergy in human urinary schistosomiasis. IL-10 modulates lymphocyte reactivity. J. Immunol. 156, 4715–4721 (1996).

Wynn, T. A. et al. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376, 594–596 (1995).

Rutitzky, L. I., Hernandez, H. J. & Stadecker, M. J. TH1-polarizing immunization with egg antigens correlates with severe exacerbation of immunopathology and death in schistosome infection. Proc. Natl Acad. Sci. USA 98, 13243–13248 (2001).References 33 and 34 show that induced T H 1 responses against egg antigens can lead to reduced hepatic fibrosis, but that there is a risk of severe disease in mice that are immunologically polarized in this way. These papers emphasize the importance of the appropriate immunological balance for optimal outcome during infection.

Wynn, T. A., Eltoum, I., Oswald, I. P., Cheever, A. W. & Sher, A. Endogenous interleukin-12 (IL-12) regulates granuloma formation induced by eggs of Schistosoma mansoni, and exogenous IL-12 both inhibits and prophylactically immunizes against egg pathology. J. Exp. Med. 179, 1551–1561 (1994).

Morris, S. C. et al. Effects of IL-12 on in vivo cytokine gene expression and Ig-isotype selection. J. Immunol. 152, 1047–1056 (1994).

Hernandez, H. J., Wang, Y. & Stadecker, M. J. In infection with Schistosoma mansoni, B cells are required for T helper type-2 cell responses but not for granuloma formation. J. Immunol. 158, 4832–4837 (1997).

Jankovic, D. et al. CD4+ T-cell-mediated granulomatous pathology in schistosomiasis is downregulated by a B-cell-dependent mechanism requiring Fc receptor signaling. J. Exp. Med. 187, 619–629 (1998).

Hernandez, H. J., Sharpe, A. H. & Stadecker, M. J. Experimental murine schistosomiasis in the absence of B7 costimulatory molecules: reversal of elicited T-cell cytokine profile and partial inhibition of egg granuloma formation. J. Immunol. 162, 2884–2889 (1999).

MacDonald, A. S. et al. Impaired TH2 development and increased mortality during Schistosoma mansoni infection in the absence of CD40/CD154 interaction. J. Immunol. 168, 4643–4649 (2002).

Salzet, M., Capron, A. & Stefano, G. B. Molecular crosstalk in host–parasite relationships: schistosome– and leech–host interactions. Parasitol. Today 16, 536–540 (2000).

Basch, P. F. & Rhine, W. D. Schistosoma mansoni: reproductive potential of male and female worms cultured in vitro. J. Parasitol. 69, 567–569 (1983).

Amiri, P. et al. Tumour-necrosis factor-α restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature 356, 604–607 (1992).

Harrison, R. A. & Doenhoff, M. J. Retarded development of Schistosoma mansoni in immunosuppressed mice. Parasitology 86, 429–438 (1983).

Davies, S. J. et al. Modulation of blood-fluke development in the liver by hepatic CD4+ lymphocytes. Science 294, 1358–1361 (2001).This study expands on previous reports that schistosomes fail to develop properly in hosts that lack T cells. It raises many unanswered questions about the role of the previously unidentified CD4+ subset of hepatic lymphocytes that seems to have an important role in this process, and the identity of the mediator they produce that is used by the parasites.

Wolowczuk, I. et al. Infection of mice lacking interleukin-7 (IL-7) reveals an unexpected role for IL-7 in the development of the parasite Schistosoma mansoni. Infect. Immun. 67, 4183–4190 (1999).

Cheever, A. W., Poindexter, R. W. & Wynn, T. A. Egg laying is delayed but worm fecundity is normal in SCID mice infected with Schistosoma japonicum and S. mansoni with or without recombinant tumor-necrosis factor-α treatment. Infect. Immun. 67, 2201–2208 (1999).

Davies, S. J. & McKerrow, J. H. In Biology of Parasitism (eds Tschudi, C. & Pearce, E. J.) 273–290 (Kluwer, Boston, 2001).

Beall, M. J. & Pearce, E. J. Human transforming growth factor-β activates a receptor serine/threonine kinase from the intravascular parasite Schistosoma mansoni. J. Biol. Chem. 276, 31613–31619 (2001).

Murphy, K. M. T-lymphocyte differentiation in the periphery. Curr. Opin. Immunol. 10, 226–232 (1998).

Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent TH2 development and commitment. Immunity 12, 27–37 (2000).

Ouyang, W. et al. Inhibition of TH1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

Sabin, E. A., Araujo, M. I., Carvalho, E. M. & Pearce, E. J. Impairment of tetanus toxoid-specific TH1-like immune responses in humans infected with Schistosoma mansoni. J. Infect. Dis. 173, 269–272 (1996).

Malhotra, I. et al. Helminth- and Bacillus Calmette-Guerin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J. Immunol. 162, 6843–6848 (1999).

Kullberg, M. C., Pearce, E. J., Hieny, S. E., Sher, A. & Berzofsky, J. A. Infection with Schistosoma mansoni alters TH1/TH2 cytokine responses to a non-parasite antigen. J. Immunol. 148, 3264–3270 (1992).

Cooper, P. J., Espinel, I., Paredes, W., Guderian, R. H. & Nutman, T. B. Impaired tetanus-specific cellular and humoral responses following tetanus vaccination in human onchocerciasis: a possible role for interleukin-10. J. Infect. Dis. 178, 1133–1138 (1998).

Actor, J. K. et al. Helminth infection results in decreased virus-specific CD8+ cytotoxic T-cell and TH1 cytokine responses, as well as delayed virus clearance. Proc. Natl Acad. Sci. USA 90, 948–952 (1993).

Helmby, H., Kullberg, M. & Troye-Blomberg, M. Altered immune responses in mice with concomitant Schistosoma mansoni and Plasmodium chabaudi infections. Infect. Immun. 66, 5167–5174 (1998).

Marshall, A. J. et al. Toxoplasma gondii and Schistosoma mansoni synergize to promote hepatocyte dysfunction associated with high levels of plasma TNF-α and early death in C57BL/6 mice. J. Immunol. 163, 2089–2097 (1999).

Kamal, S. M. et al. Specific cellular immune response and cytokine patterns in patients coinfected with hepatitis C virus and Schistosoma mansoni. J. Infect. Dis. 184, 972–982 (2001).

Kamal, S. M. et al. Acute hepatitis C without and with schistosomiasis: correlation with hepatitis-C-specific CD4+ T-cell and cytokine response. Gastroenterology 121, 646–656 (2001).

McClary, H., Koch, R., Chisari, F. V. & Guidotti, L. G. Inhibition of hepatitis B virus replication during Schistosoma mansoni infection in transgenic mice. J. Exp. Med. 192, 289–294 (2000).

Brunet, L. R., Beall, M., Dunne, D. W. & Pearce, E. J. Nitric oxide and the TH2 response combine to prevent severe hepatic damage during Schistosoma mansoni infection. J. Immunol. 163, 4976–4984 (1999).

Frank, C. et al. The role of parenteral antischistosomal therapy in the spread of hepatitis C virus in Egypt. Lancet 355, 887–891 (2000).

Maggi, E. et al. Ability of HIV to promote a TH1 to TH0 shift and to replicate preferentially in TH2 and TH0 cells. Science 265, 244–248 (1994).

Bentwich, Z., Kalinkovich, A. & Weisman, Z. Immune activation is a dominant factor in the pathogenesis of African AIDS. Immunol. Today 16, 187–191 (1995).

Bentwich, Z. et al. Can eradication of helminthic infections change the face of AIDS and tuberculosis? Immunol. Today 20, 485–487 (1999).

Mwinzi, P. N., Karanja, D. M., Colley, D. G., Orago, A. S. & Secor, W. E. Cellular immune responses of schistosomiasis patients are altered by human immunodeficiency virus type 1 coinfection. J. Infect. Dis. 184, 488–496 (2001).

Curry, A. J. et al. Evidence that cytokine-mediated immune interactions induced by Schistosoma mansoni alter disease outcome in mice concurrently infected with Trichuris muris. J. Exp. Med. 181, 769–774 (1995).

Cooke, A. et al. Infection with Schistosoma mansoni prevents insulin-dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol. 21, 169–176 (1999).

Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet 351, 1225–1232 (1998).

Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. Allergy, parasites and the hygiene hypothesis. Science 296, 490–494 (2002).

Wills-Karp, M., Santeli, J. & Karp, C. L. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nature Rev. Immunol. 1, 69–74 (2001).

Araujo, M. I. et al. Inverse association between skin response to aeroallergens and Schistosoma mansoni infection. Int. Arch. Allergy Immunol. 123, 145–148 (2000).

van den Biggelaar, A. H. et al. Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet 356, 1723–1727 (2000).The identification of IL-10 as an important regulator of allergic manifestations in schistosomiasis. This area is reviewed in detail in reference 72.

Butterworth, A. E. et al. Immunity and morbidity in human schistosomiasis mansoni. Trop. Geogr. Med. 46, 197–208 (1994).

Dunne, D. W. et al. Immunity after treatment of human schistosomiasis: association between IgE antibodies to adult worm antigens and resistance to reinfection. Eur. J. Immunol. 22, 1483–1494 (1992).

Demeure, C. E. et al. Resistance to Schistosoma mansoni in humans: influence of the IgE/IgG4 balance and IgG2 in immunity to reinfection after chemotherapy. J. Infect. Dis. 168, 1000–1008 (1993).

Rihet, P., Demeure, C. E., Bourgois, A., Prata, A. & Dessein, A. J. Evidence for an association between human resistance to Schistosoma mansoni and high anti-larval IgE levels. Eur. J. Immunol. 21, 2679–2686 (1991).

Hagan, P., Blumenthal, U. J., Dunn, D., Simpson, A. J. & Wilkins, H. A. Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. Nature 349, 243–245 (1991).

Woolhouse, M. E. & Hagan, P. Seeking the ghost of worms past. Nature Med. 5, 1225–1227 (1999).

Marquet, S. et al. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31–q33. Nature Genet. 14, 181–184 (1996).

Nutten, S. et al. From allergy to schistosomes: role of Fc receptors and adhesion molecules in eosinophil effector function. Mem. Inst. Oswaldo Cruz 92 (Suppl. 2), 9–14 (1997).

Dombrowicz, D. & Capron, M. Eosinophils, allergy and parasites. Curr. Opin. Immunol. 13, 716–720 (2001).

Wilson, R. A., Coulson, P. S. & McHugh, S. M. A significant part of the 'concomitant immunity' of mice to Schistosoma mansoni is the consequence of a leaky hepatic portal system, not immune killing. Parasite Immunol. 5, 595–601 (1983).

Finkelman, F. D. & Urban, J. F. Jr. The other side of the coin: the protective role of the TH2 cytokines. J. Allergy Clin. Immunol. 107, 772–780 (2001).

Pearce, E. J., Casper, P., Grzych, J.-M., Lewis, F. A. & Sher, A. Downregulation of TH1 cytokine production accompanies induction of TH2 responses by a parasitic helminth, Schistosoma mansoni. J. Exp. Med. 173, 159–166 (1991).

Grzych, J. M. et al. Egg deposition is the major stimulus for the production of TH2 cytokines in murine schistosomiasis mansoni. J. Immunol. 146, 1322–1327 (1991).References 87 and 88 were the first to show that schistosomiasis leads to the development of a strong T H 2 response.

Holland, M. J., Harcus, Y. M., Riches, P. L. & Maizels, R. M. Proteins secreted by the parasitic nematode Nippostrongylus brasiliensis act as adjuvants for TH2 responses. Eur. J. Immunol. 30, 1977–1987 (2000).

Vella, A. T. & Pearce, E. J. CD4+ TH2 response induced by Schistosoma mansoni eggs develops rapidly, through an early, transient, TH0-like stage. J. Immunol. 148, 2283–2290 (1992).

Okano, M., Satoskar, A. R., Nishizaki, K., Abe, M. & Harn, D. A. Jr. Induction of TH2 responses and IgE is largely due to carbohydrates functioning as adjuvants on Schistosoma mansoni egg antigens. J. Immunol. 163, 6712–6717 (1999).The first report that carbohydrates on egg antigens are important for the induction of T H 2 responses. See also reference 93.

Williams, D. L., Asahi, H., Botkin, D. J. & Stadecker, M. J. Schistosome infection stimulates host CD4+ T helper cell and B-cell responses against a novel egg antigen, thioredoxin peroxidase. Infect. Immun. 69, 1134–1141 (2001).

Okano, M., Satoskar, A. R., Nishizaki, K. & Harn, D. A. Jr. Lacto-N-fucopentaose III found on Schistosoma mansoni egg antigens functions as adjuvant for proteins by inducing TH2-type response. J. Immunol. 167, 442–450 (2001).

Figdor, C. G., van Kooyk, Y. & Adema, G. J. C-type lectin receptors on dendritic cells and langerhans cells. Nature Rev. Immunol. 2, 77–84 (2002).

Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).

Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol. 2, 947–950 (2001).

Whelan, M. et al. A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of TH2 cells. J. Immunol. 164, 6453–6460 (2000).

MacDonald, A. S., Straw, A. D., Bauman, B. & Pearce, E. J. CD8− dendritic-cell activation status plays an integral role in influencing TH2 response development. J. Immunol. 167, 1982–1988 (2001).

de Jong, E. C. et al. Microbial compounds selectively induce TH1-cell-promoting or TH2-cell-promoting dendritic cellsin vitro with diverse TH-cell-polarizing signals. J. Immunol. 168, 1704–1709 (2002).

Kalinski, P., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561–567 (1999).

d'Ostiani, C. F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–1674 (2000).

MacDonald, A. S. & Pearce, E. J. Cutting edge: polarized TH-cell response induction by transferred antigen-pulsed dendritic cells is dependent on IL-4 or IL-12 production by recipient cells. J. Immunol. 168, 3127–3130 (2002).A clear demonstration that dendritic cells can interpret pathogen-inherent signals and drive egg-antigen-specific T H 2 responses independent of any requirement to make IL-4. See also references 97 and 98.

Jankovic, D. et al. Single-cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4+ lymphocytes with a TH2 cytokine profile. J. Immunol. 164, 3047–3055 (2000).

Rincon, M., Anguita, J., Nakamura, T., Fikrig, E. & Flavell, R. A. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med. 185, 461–469 (1997).

La Flamme, A. C. & Pearce, E. J. The absence of IL-6 does not affect TH2-cell development in vivo, but does lead to impaired proliferation, IL-2 receptor expression and B-cell responses. J. Immunol. 162, 5829–5837 (1999).

La Flamme, A. C., MacDonald, A. S. & Pearce, E. J. Role of IL-6 in directing the initial immune response to schistosome eggs. J. Immunol. 164, 2419–2426 (2000).

Harris, D. P. et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature Immunol. 1, 475–482 (2000).

Martin, D. L., King, C. L., Pearlman, E., Strine, E. & Heinzel, F. P. IFN-γ is necessary, but not sufficient, for anti-CD40 antibody-mediated inhibition of the TH2 response to Schistosoma mansoni eggs. J. Immunol. 164, 779–785 (2000).

van Kooten, C. & Banchereau, J. Functions of CD40 on B cells, dendritic cells and other cells. Curr. Opin. Immunol. 9, 330–337 (1997).

MacDonald, A. S., Straw, A. D., Dalton, N. M. & Pearce, E. J. Cutting edge: TH2 response induction by dendritic cells: a role for CD40. J. Immunol. 168, 537–540 (2002).

Coyle, A. J. & Gutierrez-Ramos, J. C. The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T-cell function. Nature Immunol. 2, 203–209 (2001).

Subramanian, G. et al. B7-2 requirement for helminth-induced granuloma formation and CD4 type-2 T helper cell cytokine expression. J. Immunol. 158, 5914–5920 (1997).

Kopf, M. et al. Inducible costimulator protein (ICOS) controls T-helper cell subset polarization after virus and parasite infection. J. Exp. Med. 192, 53–61 (2000).

Xu, D. et al. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J. Exp. Med. 187, 787–794 (1998).

Tesciuba, A. G. et al. Inducible costimulator regulates TH2-mediated inflammation, but not TH2 differentiation, in a model of allergic airway disease. J. Immunol. 167, 1996–2003 (2001).

Lohning, M. et al. T1/ST2 expression is enhanced on CD4+ T cells from schistosome egg-induced granulomas: analysis of TH-cell cytokine coexpression ex vivo. J. Immunol. 162, 3882–3889 (1999).

Townsend, M. J., Fallon, P. G., Matthews, D. J., Jolin, H. E. & McKenzie, A. N. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type-2 responses. J. Exp. Med. 191, 1069–1076 (2000).

Capron, A., Capron, M., Dombrowicz, D. & Riveau, G. Vaccine strategies against schistosomiasis: from concepts to clinical trials. Int. Arch. Allergy Immunol. 124, 9–15 (2001).

Bergquist, N. & Colley, D. Schistosomiasis vaccines: research to development. Parasitol. Today 14, 99–104 (1998).

Pearce, E. Progress towards a vaccine for schistosomiasis. Acta Tropica (in the press).

Wilson, R. A., Coulson, P. S. & Mountford, A. P. Immune responses to the radiation-attenuated schistosome vaccine: what can we learn from knock-out mice? Immunol. Lett. 65, 117–123 (1999).

Wynn, T. A. & Hoffmann, K. F. Defining a schistosomiasis vaccination strategy — is it really TH1 versus TH2? Parasitol. Today 16, 497–501 (2000).

Caulada-Benedetti, Z., al-Zamel, F., Sher, A. & James, S. Comparison of TH1- and TH2-associated immune reactivities stimulated by single versus multiple vaccination of mice with irradiated Schistosoma mansoni cercariae. J. Immunol. 146, 1655–1660 (1991).

Oswald, I. P., Wynn, T. A., Sher, A. & James, S. L. NO as an effector molecule of parasite killing: modulation of its synthesis by cytokines. Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 108, 11–18 (1994).

Street, M. et al. TNF is essential for the cell-mediated protective immunity induced by the radiation-attenuated schistosome vaccine. J. Immunol. 163, 4489–4494 (1999).

Wilson, R. A., Coulson, P. S., Betts, C., Dowling, M. A. & Smythies, L. E. Impaired immunity and altered pulmonary responses in mice with a disrupted interferon-γ receptor gene exposed to the irradiated Schistosoma mansoni vaccine. Immunology 87, 275–282 (1996).

Jankovic, D. et al. Optimal vaccination against Schistosoma mansoni requires the induction of both B-cell- and IFN-γ-dependent effector mechanisms. J. Immunol. 162, 345–351 (1999).

Wynn, T. A. et al. IL-12 enhances vaccine-induced immunity to schistosomes by augmenting both humoral and cell-mediated immune responses against the parasite. J. Immunol. 157, 4068–4078 (1996).

Chiaramonte, M. G., Hesse, M., Cheever, A. W. & Wynn, T. A. CpG oligonucleotides can prophylactically immunize against TH2-mediated schistosome egg-induced pathology by an IL-12-independent mechanism. J. Immunol. 164, 973–985 (2000).

Anderson, S., Shires, V. L., Wilson, R. A. & Mountford, A. P. In the absence of IL-12, the induction of TH1-mediated protective immunity by the attenuated schistosome vaccine is impaired, revealing an alternative pathway with TH2-type characteristics. Eur. J. Immunol. 28, 2827–2838 (1998).

Mangold, B. L. & Dean, D. A. The role of IgG antibodies from irradiated cercaria-immunized rabbits in the passive transfer of immunity to Schistosoma mansoni-infected mice. Am. J. Trop. Med. Hyg. 47, 821–829 (1992).

Hoffmann, K. F., James, S. L., Cheever, A. W. & Wynn, T. A. Studies with double cytokine-deficient mice reveal that highly polarized TH1- and TH2-type cytokine and antibody responses contribute equally to vaccine-induced immunity to Schistosoma mansoni. J. Immunol. 163, 927–938 (1999).

Doenhoff, M., Kimani, G. & Cioli, D. Praziquantel and the control of schistosomiasis. Parasitol. Today 16, 364–366 (2000).

Wynn, T. A. Development of an antipathology vaccine for schistosomiasis. Ann. NY Acad. Sci. 797, 191–195 (1996).

Stadecker, M. J. The regulatory role of the antigen-presenting cell in the development of hepatic immunopathology during infection with Schistosoma mansoni. Pathobiology 67, 269–272 (1999).

Pearce, E. J. & Sher, A. Mechanisms of immune evasion in schistosomiasis. Contrib. Microbiol. Immunol. 8, 219–232 (1987).

Colley, D. G., LoVerde, P. T. & Savioli, L. Infectious disease. Medical helminthology in the 21st century. Science 293, 1437–1438 (2001).

Cribb, T. A., Bray, R. A., Littlewood, T., Pichelin, S. P. & Herniou, E. A. In Interrelationships of the Platyhelminthes (eds Littlewood, D. T. J. & Bray, R. A.) 168–185 (Taylor & Francis, London, 2001).

Agnew, A. M., Murare, H. M. & Doenhoff, M. J. Immune attrition of adult schistosomes. Parasite Immunol. 15, 261–271 (1993).

Doenhoff, M. J. A role for granulomatous inflammation in the transmission of infectious disease: schistosomiasis and tuberculosis. Parasitology 115, S113–S125 (1997).

Karanja, D. M., Colley, D. G., Nahlen, B. L., Ouma, J. H. & Secor, W. E. Studies on schistosomiasis in western Kenya. I. Evidence for immune-facilitated excretion of schistosome eggs from patients with Schistosoma mansoni and human immunodeficiency virus coinfections. Am. J. Trop. Med. Hyg. 56, 515–521 (1997).

Ngaiza, J. R. & Doenhoff, M. J. Blood platelets and schistosome egg excretion. Proc. Soc. Exp. Biol. Med. 193, 73–79 (1990).

Ishii, A. et al. Parasite infection and cancer: with special emphasis on Schistosoma japonicum infections (Trematoda). A review. Mutat. Res. 305, 273–281 (1994).

Feldmeier, H., Leutscher, P., Poggensee, G. & Harms, G. Male genital schistosomiasis and haemospermia. Trop. Med. Int. Health 4, 791–793 (1999).

Poggensee, G., Krantz, I., Kiwelu, I., Diedrich, T. & Feldmeier, H. Presence of Schistosoma mansoni eggs in the cervix uteri of women in Mwanga District, Tanzania. Trans. R. Soc. Trop. Med. Hyg. 95, 299–300 (2001).

Fallon, P. G. & Dunne, D. W. Tolerization of mice to Schistosoma mansoni egg antigens causes elevated type 1 and diminished type 2 cytokine responses and increased mortality in acute infection. J. Immunol. 162, 4122–4132 (1999).

Dunne, D. W. & Doenhoff, M. J. Schistosoma mansoni egg antigens and hepatocyte damage in infected T-cell-deprived mice. Contrib. Microbiol. Immunol. 7, 22–29 (1983).

Read, S. & Powrie, F. CD4+ regulatory T cells. Curr. Opin. Immunol. 13, 644–649 (2001).

Angeli, V. et al. Role of the parasite-derived prostaglandin D2 in the inhibition of epidermal Langerhans cell migration during schistosomiasis infection. J. Exp. Med. 193, 1135–1147 (2001).

Fallon, P. G. Immunopathology of schistosomiasis: a cautionary tale of mice and men. Immunol. Today 21, 29–35 (2000).