The <i>Caenorhabditis elegans</i> Transgenic Toolbox

Genetics - Tập 212 Số 4 - Trang 959-990 - 2019
Jeremy Nance1, Christian Frøkjær‐Jensen2
1Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
2King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia

Tóm tắt

Abstract The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.

Từ khóa


Tài liệu tham khảo

Achilleos, 2010, PAR-3 mediates the initial clustering and apical localization of junction and polarity proteins during C. elegans intestinal epithelial cell polarization., Development, 137, 1833, 10.1242/dev.047647

Ahier, 2014, Simultaneous expression of multiple proteins under a single promoter in Caenorhabditis elegans via a versatile 2A-based toolkit., Genetics, 196, 605, 10.1534/genetics.113.160846

Akay, 2017, The helicase aquarius/EMB-4 is required to overcome intronic barriers to allow nuclear RNAi pathways to heritably silence transcription., Dev. Cell, 42, 241, 10.1016/j.devcel.2017.07.002

Allen, 2011, A global analysis of C. elegans trans-splicing., Genome Res., 21, 255, 10.1101/gr.113811.110

Anderson, 2008, Polarization of the C. elegans embryo by RhoGAP-mediated exclusion of PAR-6 from cell contacts., Science, 320, 1771, 10.1126/science.1156063

Armenti, 2014, Repurposing an endogenous degradation system for rapid and targeted depletion of C. elegans proteins., Development, 141, 4640, 10.1242/dev.115048

Arribere, 2014, Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans., Genetics, 837, 10.1534/genetics.114.169730

Ashe, 2012, piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans., Cell, 150, 88, 10.1016/j.cell.2012.06.018

Bacaj, 2007, Temporal control of cell-specific transgene expression in Caenorhabditis elegans., Genetics, 176, 2651, 10.1534/genetics.107.074369

Bagijn, 2012, Function, targets, and evolution of Caenorhabditis elegans piRNAs., Science, 337, 574, 10.1126/science.1220952

Banga, 1992, Oligonucleotide-directed site-specific mutagenesis in Drosophila melanogaster., Proc. Natl. Acad. Sci. USA, 89, 1735, 10.1073/pnas.89.5.1735

Barkoulas, 2013, Robustness and epistasis in the C. elegans vulval signaling network revealed by pathway dosage modulation., Dev. Cell, 24, 64, 10.1016/j.devcel.2012.12.001

Barrett, 2004, Targeted gene alteration in Caenorhabditis elegans by gene conversion., Nat. Genet., 36, 1231, 10.1038/ng1459

Batista, 2008, PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans., Mol. Cell, 31, 67, 10.1016/j.molcel.2008.06.002

Bazopoulou, 2009, The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans., Genetica, 137, 39, 10.1007/s10709-009-9361-3

Beer, 2018, Extracellular vesicle budding is inhibited by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry., Proc. Natl. Acad. Sci. USA, 115, E1127, 10.1073/pnas.1714085115

Bell, 2016, Cas9 variants expand the target repertoire in Caenorhabditis elegans., Genetics, 202, 381, 10.1534/genetics.115.185041

Bellen, 1989, P-element-mediated enhancer detection: a versatile method to study development in Drosophila., Genes Dev., 3, 1288, 10.1101/gad.3.9.1288

Berkowitz, 2008, Generation of stable transgenic C. elegans using microinjection., J. Vis. Exp., 10.3791/833

Bessereau, 2001, Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line., Nature, 413, 70, 10.1038/35092567

10.1895/wormbook.1.70.1

10.1895/wormbook.1.5.1

Blumenthal, 1997, RNA processing and gene structure, C. elegans II

Boch, 2009, Breaking the code of DNA binding specificity of TAL-type III effectors., Science, 326, 1509, 10.1126/science.1178811

Boulin, 2007, Mos1-mediated insertional mutagenesis in Caenorhabditis elegans., Nat. Protoc., 2, 1276, 10.1038/nprot.2007.192

10.1895/wormbook.1.106.1

Brand, 1993, Targeted gene expression as a means of altering cell fates and generating dominant phenotypes., Development, 118, 401, 10.1242/dev.118.2.401

Calixto, 2010, Conditional gene expression and RNAi using MEC-8–dependent splicing in C. elegans., Nat. Methods, 7, 407, 10.1038/nmeth.1445

Casteret, 2009, Physical properties of DNA components affecting the transposition efficiency of the mariner Mos1 element., Mol. Genet. Genomics, 282, 531, 10.1007/s00438-009-0484-0

Caussinus, 2011, Fluorescent fusion protein knockout mediated by anti-GFP nanobody., Nat. Struct. Mol. Biol., 19, 117, 10.1038/nsmb.2180

C. elegans Deletion Mutant Consortium, 2012, Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome., G3 (Bethesda), 1415, 10.1534/g3.112.003830

C. elegans Sequencing Consortium, 1998, Genome sequence of the nematode C. elegans: a platform for investigating biology, Science, 2012

Chan, 2013, Mechanisms of CDC-42 activation during contact-induced cell polarization., J. Cell Sci., 126, 1692, 10.1242/jcs.124594

Chen, 2013, Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination., Nucleic Acids Res., 41, 10.1093/nar/gkt805

Chen, 2013, The landscape of RNA polymerase II transcription initiation in C. elegans reveals promoter and enhancer architectures., Genome Res., 23, 1339, 10.1101/gr.153668.112

Chen, 2014, Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans., Sci. Rep., 4, 7581, 10.1038/srep07581

Chen, 2016, Targeted genome engineering in Caenorhabditis elegans., Cell Biosci., 6, 60, 10.1186/s13578-016-0125-3

Chen, 2013, Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans., Neuron, 77, 572, 10.1016/j.neuron.2012.11.025

Chihara, 2012, An E-cadherin-mediated hitchhiking mechanism for C. elegans germ cell internalization during gastrulation., Development, 139, 2547, 10.1242/dev.079863

Chiu, 2013, Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas., Genetics, 195, 1167, 10.1534/genetics.113.155879

Cho, 2013, Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins., Genetics, 195, 1177, 10.1534/genetics.113.155853

Cho, 2013, Rapid and tunable control of protein stability in Caenorhabditis elegans using a small molecule., PLoS One, 8, 10.1371/journal.pone.0072393

Chu, 2014, Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein., Nat. Methods, 11, 572, 10.1038/nmeth.2888

Chuang, 2014, The microtubule minus-end-binding protein patronin/PTRN-1 is required for axon regeneration in C. elegans., Cell Rep., 9, 874, 10.1016/j.celrep.2014.09.054

Churgin, 2013, Efficient single-cell transgene induction in Caenorhabditis elegans using a pulsed infrared laser., G3 (Bethesda), 1827, 10.1534/g3.113.007682

Clark, 1994, The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins., Genetics, 137, 987, 10.1093/genetics/137.4.987

Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems., Science, 339, 819, 10.1126/science.1231143

Cutter, 2009, Evolution of the Caenorhabditis elegans genome., Mol. Biol. Evol., 26, 1199, 10.1093/molbev/msp048

Daniel, 2018, Conditional control of fluorescent protein degradation by an auxin-dependent nanobody., Nat. Commun., 9, 3297, 10.1038/s41467-018-05855-5

Daugherty, 2017, Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans., Genome Res., 27, 2096, 10.1101/gr.226233.117

Davis, 2008, Gene activation using FLP recombinase in C. elegans., PLoS Genet., 4, 10.1371/journal.pgen.1000028

Dejima, 2018, An aneuploidy-free and structurally defined balancer chromosome toolkit for Caenorhabditis elegans., Cell Rep., 22, 232, 10.1016/j.celrep.2017.12.024

DeRenzo, 2003, Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation., Nature, 424, 685, 10.1038/nature01887

Dharmasiri, 2005, The F-box protein TIR1 is an auxin receptor., Nature, 435, 441, 10.1038/nature03543

Dickinson, 2016, CRISPR-based methods for Caenorhabditis elegans genome engineering., Genetics, 202, 885, 10.1534/genetics.115.182162

Dickinson, 2013, Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination., Nat. Methods, 10, 1028, 10.1038/nmeth.2641

Dickinson, 2015, Streamlined genome engineering with a self-excising drug selection cassette., Genetics, 200, 1035, 10.1534/genetics.115.178335

Dickinson, 2018, SapTrap Assembly of Repair Templates for Cas9-Triggered Homologous Recombination with a Self-Excising Cassette, MicroPublication Biol

Dokshin, 2018, Robust genome editing with short single-stranded and long, partially single-stranded DNA donors in Caenorhabditis elegans., Genetics, 781, 10.1534/genetics.118.301532

Dolphin, 2006, Caenorhabditis elegans reporter fusion genes generated by seamless modification of large genomic DNA clones., Nucleic Acids Res., 34, 10.1093/nar/gkl352

Dominguez, 2016, Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation., Nat. Rev. Mol. Cell Biol., 17, 5, 10.1038/nrm.2015.2

Doudna, 2014, The new frontier of genome engineering with CRISPR-Cas9., Science, 346, 10.1126/science.1258096

Drexel, 2016, Neuron type-specific miRNA represses two broadly expressed genes to modulate an avoidance behavior in C. elegans., Genes Dev., 30, 2042, 10.1101/gad.287904.116

Dupuy, 2004, A first version of the Caenorhabditis elegans promoterome., Genome Res., 14, 2169, 10.1101/gr.2497604

Duverger, 2007, A semi-automated high-throughput approach to the generation of transposon insertion mutants in the nematode Caenorhabditis elegans., Nucleic Acids Res., 35, 10.1093/nar/gkl1046

Ebbing, 2017, Extending the CRISPR toolbox for C. elegans:Cpf1 as an alternative gene editing system for AT-rich sequences, Micropublication Biol, 10.17912/W2237D

El Mouridi, 2017, Reliable CRISPR/Cas9 genome engineering in Caenorhabditis elegans using a single efficient sgRNA and an easily recognizable phenotype., G3 (Bethesda), 7, 1429, 10.1534/g3.117.040824

Engler, 2008, A one pot, one step, precision cloning method with high throughput capability., PLoS One, 3, 10.1371/journal.pone.0003647

Evans, 2006, 10.1895/wormbook.1.108.1

Ezcurra, 2011, Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling., EMBO J., 30, 1110, 10.1038/emboj.2011.22

Farboud, 2017, Targeted genome editing in Caenorhabditis elegans using CRISPR/Cas9., Wiley Interdiscip. Rev. Dev. Biol., 6, 10.1002/wdev.287

Farboud, 2019, Strategies for efficient genome editing using CRISPR-Cas9., Genetics, 211, 431, 10.1534/genetics.118.301775

Fazeli, 2016, C. elegans midbodies are released, phagocytosed and undergo LC3-dependent degradation independent of macroautophagy., J. Cell Sci., 129, 3721, 10.1242/jcs.190223

Fazeli, 2018, C. elegans blastomeres clear the corpse of the second polar body by LC3-associated phagocytosis., Cell Rep., 23, 2070, 10.1016/j.celrep.2018.04.043

Feinberg, 2008, GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems., Neuron, 57, 353, 10.1016/j.neuron.2007.11.030

Feldman, 2012, A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization., Curr. Biol., 22, 575, 10.1016/j.cub.2012.02.044

Feng, 2017, Improved split fluorescent proteins for endogenous protein labeling., Nat. Commun., 8, 370, 10.1038/s41467-017-00494-8

Ferrandiz, 2018, Spatiotemporal regulation of Aurora B recruitment ensures release of cohesion during C. elegans oocyte meiosis., Nat. Commun., 9, 834, 10.1038/s41467-018-03229-5

10.7554/eLife.38198

Fire, 1986, Integrative transformation of Caenorhabditis elegans., EMBO J., 5, 2673, 10.1002/j.1460-2075.1986.tb04550.x

Fire, 1998, GFP applications in C. elegans, Green Fluorescent Protein: Properties, Applications, and Protocols

Fire, 2006, Unusual DNA structures associated with germline genetic activity in Caenorhabditis elegans., Genetics, 173, 1259, 10.1534/genetics.106.057364

Friedland, 2013, Heritable genome editing in C. elegans via a CRISPR-Cas9 system., Nat. Methods, 10, 741, 10.1038/nmeth.2532

Frøkjær-Jensen, 2008, Single-copy insertion of transgenes in Caenorhabditis elegans., Nat. Genet., 40, 1375, 10.1038/ng.248

Frøkjær-Jensen, 2010, Targeted gene deletions in C. elegans using transposon excision., Nat. Methods, 7, 451, 10.1038/nmeth.1454

Frøkjær-Jensen, 2012, Improved Mos1-mediated transgenesis in C. elegans., Nat. Methods, 9, 117, 10.1038/nmeth.1865

Frøkjær-Jensen, 2014, Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon., Nat. Methods, 11, 529, 10.1038/nmeth.2889

Frøkjær-Jensen, 2016, An abundant class of non-coding DNA can prevent stochastic gene silencing in the C. elegans germline., Cell, 166, 343, 10.1016/j.cell.2016.05.072

Fu, 2014, Landscape of target: guide homology effects on Cas9-mediated cleavage., Nucleic Acids Res., 42, 13778, 10.1093/nar/gku1102

Gallo, 2010, Cytoplasmic partitioning of P granule components is not required to specify the germline in C. elegans., Science, 330, 1685, 10.1126/science.1193697

Ghosh, 2000, Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein., J. Am. Chem. Soc., 122, 5658, 10.1021/ja994421w

Giordano-Santini, 2010, An antibiotic selection marker for nematode transgenesis., Nat. Methods, 7, 721, 10.1038/nmeth.1494

Girton, 2008, Chromatin structure and the regulation of gene expression: the lessons of PEV in Drosophila., Adv. Genet., 61, 1, 10.1016/S0065-2660(07)00001-6

Gloor, 1991, Targeted gene replacement in Drosophila via P element-induced gap repair., Science, 253, 1110, 10.1126/science.1653452

Gordley, 2016, Modular engineering of cellular signaling proteins and networks., Curr. Opin. Struct. Biol., 39, 106, 10.1016/j.sbi.2016.06.012

Gu, 2010, Partitioning the C. elegans genome by nucleosome modification, occupancy, and positioning., Chromosoma, 119, 73, 10.1007/s00412-009-0235-3

Gu, 2012, CapSeq and CIP-TAP identify pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors., Cell, 151, 1488, 10.1016/j.cell.2012.11.023

Hajdu-Cronin, 2004, The L-type cyclin CYL-1 and the heat-shock-factor HSF-1 are required for heat-shock-induced protein expression in Caenorhabditis elegans., Genetics, 168, 1937, 10.1534/genetics.104.028423

Harterink, 2017, DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells., Nat. Methods, 14, 479, 10.1038/nmeth.4257

He, 2019, NATF (native and tissue-specific fluorescence): a strategy for bright, tissue-specific GFP labeling of native proteins in Caenorhabditis elegans., Genetics, 387, 10.1534/genetics.119.302063

Hefel, 2019, Tissue-specific split sfGFP system for streamlined expression of GFP tagged proteins in the Caenorhabditis elegans germline., G3 (Bethesda), 1933, 10.1534/g3.119.400162

Heppert, 2016, Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system., Mol. Biol. Cell, 27, 3385, 10.1091/mbc.e16-01-0063

Hermann, 2015, A photosensitive degron enables acute light-induced protein degradation in the nervous system., Curr. Biol., 25, R749, 10.1016/j.cub.2015.07.040

Hinnen, 1978, Transformation of yeast., Proc. Natl. Acad. Sci. USA, 75, 1929, 10.1073/pnas.75.4.1929

Hobert, 2002, PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans., Biotechniques, 32, 728, 10.2144/02324bm01

10.1895/wormbook.1.12.1

10.3791/2090

Hollopeter, 2014, The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex., eLife, 3, 10.7554/eLife.03648

Houri-Zeevi, 2017, A matter of time: small RNAs regulate the duration of epigenetic inheritance., Trends Genet. TIG, 33, 46, 10.1016/j.tig.2016.11.001

Hu, 2018, Evolved Cas9 variants with broad PAM compatibility and high DNA specificity., Nature, 556, 57, 10.1038/nature26155

Huang, 2007, Identification and analysis of internal promoters in Caenorhabditis elegans operons., Genome Res., 17, 1478, 10.1101/gr.6824707

Hubbard, 2014, FLP/FRT and Cre/lox recombination technology in C. elegans., Methods, 68, 417, 10.1016/j.ymeth.2014.05.007

Hunt-Newbury, 2007, High-throughput in vivo analysis of gene expression in Caenorhabditis elegans., PLoS Biol., 5, 10.1371/journal.pbio.0050237

Iwata, 2016, Engineering new balancer chromosomes in C. elegans via CRISPR/Cas9., Sci. Rep., 6, 33840, 10.1038/srep33840

Johnston, 2003, A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans., Nature, 426, 845, 10.1038/nature02255

Jorgensen, 2002, The art and design of genetic screens: Caenorhabditis elegans., Nat. Rev. Genet., 3, 356, 10.1038/nrg794

Kage-Nakadai, 2012, Single/low-copy integration of transgenes in Caenorhabditis elegans using an ultraviolet trimethylpsoralen method., BMC Biotechnol., 12, 1, 10.1186/1472-6750-12-1

Kage-Nakadai, 2014, A conditional knockout toolkit for Caenorhabditis elegans based on the Cre/loxP recombination., PLoS One, 9, 10.1371/journal.pone.0114680

Kamiyama, 2016, Versatile protein tagging in cells with split fluorescent protein., Nat. Commun., 7, 11046, 10.1038/ncomms11046

Kanca, 2017, Gene tagging strategies to assess protein expression, localization, and function in Drosophila., Genetics, 207, 389, 10.1534/genetics.117.199968

Kasimatis, 2018, Auxin-mediated sterility induction system for longevity and mating studies in Caenorhabditis elegans., G3 (Bethesda), 8, 2655, 10.1534/g3.118.200278

Katic, 2013, Targeted heritable mutation and gene conversion by Cas9-CRISPR in Caenorhabditis elegans., Genetics, 195, 1173, 10.1534/genetics.113.155754

Kelly, 1997, Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene., Genetics, 146, 227, 10.1093/genetics/146.1.227

Kelly, 2002, X-chromosome silencing in the germline of C. elegans., Development, 129, 479, 10.1242/dev.129.2.479

Kepinski, 2005, The Arabidopsis F-box protein TIR1 is an auxin receptor., Nature, 435, 446, 10.1038/nature03542

Kerk, 2017, Diversification of C. elegans motor neuron identity via selective effector gene repression., Neuron, 93, 80, 10.1016/j.neuron.2016.11.036

Kim, 2014, A Co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans., Genetics, 197, 1069, 10.1534/genetics.114.166389

Kim, 2005, Functional genomic analysis of RNA interference in C. elegans., Science, 308, 1164, 10.1126/science.1109267

Kim, 2018, A neuronal piRNA pathway inhibits axon regeneration in C. elegans., Neuron, 97, 511, 10.1016/j.neuron.2018.01.014

Kim, 1996, Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain., Proc. Natl. Acad. Sci. USA, 93, 1156, 10.1073/pnas.93.3.1156

Kimble, 1982, Suppression of an amber mutation by microinjection of suppressor tRNA in C. elegans., Nature, 299, 456, 10.1038/299456a0

Kleinstiver, 2015, Engineered CRISPR-Cas9 nucleases with altered PAM specificities., Nature, 523, 481, 10.1038/nature14592

Korswagen, 1996, Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping., Proc. Natl. Acad. Sci. USA, 93, 14680, 10.1073/pnas.93.25.14680

Kramer, 1990, The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen., Mol. Cell. Biol., 10, 2081, 10.1128/MCB.10.5.2081

Kruesi, 2013, Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation., eLife, 2, 10.7554/eLife.00808

Kurup, 2018, Intermediate filament accumulation can stabilize microtubules in Caenorhabditis elegans motor neurons., Proc Natl Acad Sci U A, 115, 3114, 10.1073/pnas.1721930115

Lambert, 2019, FPbase: a community-editable fluorescent protein database., Nat. Methods, 16, 277, 10.1038/s41592-019-0352-8

10.1895/wormbook.1.79.1

Lee, 2012, C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts., Cell, 150, 78, 10.1016/j.cell.2012.06.016

Lee, 1993, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14., Cell, 75, 843, 10.1016/0092-8674(93)90529-Y

Le Hir, 2003, How introns influence and enhance eukaryotic gene expression., Trends Biochem. Sci., 28, 215, 10.1016/S0968-0004(03)00052-5

Lehrbach, 2009, LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans., Nat. Struct. Mol. Biol., 16, 1016, 10.1038/nsmb.1675

Li, 2016, The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans., Genesis, 170, 10.1002/dvg.22932

Li, 2014, Encoding of both analog- and digital-like behavioral outputs by one C. elegans interneuron., Cell, 159, 751, 10.1016/j.cell.2014.09.056

Lim, 2016, Neuroendocrine modulation sustains the C. elegans forward motor state., eLife, 5, 10.7554/eLife.19887

Lin, 2013, Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI)., Neuron, 79, 241, 10.1016/j.neuron.2013.05.022

Liu, 2014, Heritable/conditional genome editing in C. elegans using a CRISPR-Cas9 feeding system., Cell Res., 24, 886, 10.1038/cr.2014.73

Liu, 2017, Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses., Nat. Commun., 8, 14818, 10.1038/ncomms14818

Liu, 2011, Broad chromosomal domains of histone modification patterns in C. elegans., Genome Res., 21, 227, 10.1101/gr.115519.110

Liu, 2017, Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector., Sci. Rep., 7, 2193, 10.1038/s41598-017-02460-2

Lo, 2013, Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions., Genetics, 195, 331, 10.1534/genetics.113.155382

Lok, 2017, Transgenesis in Strongyloides and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing., Parasitology, 144, 327, 10.1017/S0031182016000391

Long, 2015, Regulation of transcriptionally active genes via the catalytically inactive Cas9 in C. elegans and D. rerio., Cell Res., 25, 638, 10.1038/cr.2015.35

Luke, 2008, Occurrence, function and evolutionary origins of ‘2A-like’ sequences in virus genomes., J. Gen. Virol., 89, 1036, 10.1099/vir.0.83428-0

Macosko, 2009, A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans., Nature, 458, 1171, 10.1038/nature07886

Mali, 2013, RNA-guided human genome engineering via Cas9., Science, 339, 823, 10.1126/science.1232033

Mali, 2013, Cas9 as a versatile tool for engineering biology., Nat. Methods, 10, 957, 10.1038/nmeth.2649

Mangone, 2010, The landscape of C. elegans 3′UTRs., Science, 329, 432, 10.1126/science.1191244

Mao, 2019, A Tet/Q hybrid system for robust and versatile control of transgene expression in C. elegans., iScience, 224, 10.1016/j.isci.2018.12.023

Maduro, 1995, Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system, Genetics, 141, 977, 10.1093/genetics/141.3.977

McGhee, 1997, Transcription factors and transcriptional regulation, C. elegans II

Mello, 1995, Chapter 19 DNA Transformation, Methods in Cell Biology, Caenorhabditis elegans: Modern Biologcal Analysis of an Organism, 451, 10.1016/S0091-679X(08)61399-0

Mello, 1991, Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences., EMBO J., 10, 3959, 10.1002/j.1460-2075.1991.tb04966.x

Merritt, 2010, Transgenic solutions for the germline, 10.1895/wormbook.1.148.1

Merritt, 2008, 3′ UTRs are the primary regulators of gene expression in the C. elegans germline., Curr. Biol., 18, 1476, 10.1016/j.cub.2008.08.013

10.1895/wormbook.1.8.1

Moerman, 1984, Spontaneous unstable unc-22 iv mutations in C., Elegans Var. Bergerac. Genetics, 108, 859

Monsalve, 2019, A new tool for inducible gene expression in Caenorhabditis elegans., Genetics, 211, 419, 10.1534/genetics.118.301705

Moscou, 2009, A simple cipher governs DNA recognition by TAL effectors., Science, 326, 1501, 10.1126/science.1178817

Muñoz-Jiménez, 2017, An efficient FLP-based toolkit for spatiotemporal control of gene expression in Caenorhabditis elegans., Genetics, 206, 1763, 10.1534/genetics.117.201012

Nance, 2003, C. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation., Development, 130, 5339, 10.1242/dev.00735

Nishimasu, 2018, Engineered CRISPR-Cas9 nuclease with expanded targeting space., Science, 361, 1259, 10.1126/science.aas9129

Noma, 2018, Rapid integration of multi-copy transgenes using optogenetic mutagenesis in Caenorhabditis elegans., G3 (Bethesda), 2091, 10.1534/g3.118.200158

10.7554/eLife.26376

Okkema, 1993, Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans., Genetics, 135, 385, 10.1093/genetics/135.2.385

Orr-Weaver, 1981, Yeast transformation: a model system for the study of recombination., Proc. Natl. Acad. Sci. USA, 78, 6354, 10.1073/pnas.78.10.6354

Paix, 2014, Scalable and versatile genome editing using linear DNAs with micro-homology to Cas9 sites in Caenorhabditis elegans., Genetics, 1347, 10.1534/genetics.114.170423

Paix, 2015, High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 Ribonucleoprotein complexes., Genetics, 201, 47, 10.1534/genetics.115.179382

Paix, 2016, Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs., Nucleic Acids Res., 44, 10.1093/nar/gkw502

Pani, 2018, Direct visualization of a native Wnt in vivo reveals that a long-range Wnt gradient forms by extracellular dispersal., eLife, 7, 10.7554/eLife.38325

Patel, 2017, Coordinated control of terminal differentiation and restriction of cellular plasticity., eLife, 6, 10.7554/eLife.24100

Pelisch, 2017, A SUMO-dependent protein network regulates chromosome congression during oocyte meiosis., Mol. Cell, 65, 66, 10.1016/j.molcel.2016.11.001

Plasterk, 1992, Targeted alterations of the Caenorhabditis elegans genome by transgene instructed DNA double strand break repair following Tc1 excision., EMBO J., 11, 287, 10.1002/j.1460-2075.1992.tb05051.x

Plasterk, 1997, Transposons, C. elegans II

Pokala, 2014, Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels., Proc. Natl. Acad. Sci. USA, 111, 2770, 10.1073/pnas.1400615111

Potter, 2010, The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis., Cell, 141, 536, 10.1016/j.cell.2010.02.025

Praitis, 2001, Creation of low-copy integrated transgenic lines in Caenorhabditis elegans., Genetics, 157, 1217, 10.1093/genetics/157.3.1217

Prior, 2017, Highly efficient, rapid and Co-CRISPR-independent genome editing in Caenorhabditis elegans., G3 (Bethesda), 3693, 10.1534/g3.117.300216

Quax, 2015, Codon bias as a means to fine-tune gene expression., Mol. Cell, 59, 149, 10.1016/j.molcel.2015.05.035

Radman, 2013, Efficient and rapid C. elegans transgenesis by bombardment and hygromycin B selection., PLoS One, 8, 10.1371/journal.pone.0076019

Reboul, 2003, C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression., Nat. Genet., 34, 35, 10.1038/ng1140

Redemann, 2011, Codon adaptation-based control of protein expression in C. elegans., Nat. Methods, 8, 250, 10.1038/nmeth.1565

Reese, 2000, Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains., Mol. Cell, 6, 445, 10.1016/S1097-2765(00)00043-5

Reinke, 2004, Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans., Development, 131, 311, 10.1242/dev.00914

Robert, 2008, Gene conversion and end-joining-repair double-strand breaks in the Caenorhabditis elegans germline., Genetics, 180, 673, 10.1534/genetics.108.089698

Rockman, 2009, Recombinational landscape and population genomics of Caenorhabditis elegans., PLoS Genet., 5, 10.1371/journal.pgen.1000419

Rodriguez, 2017, The growing and glowing toolbox of fluorescent and photoactive proteins., Trends Biochem. Sci., 42, 111, 10.1016/j.tibs.2016.09.010

Rong, 2000, Gene targeting by homologous recombination in Drosophila., Science, 288, 2013, 10.1126/science.288.5473.2013

Ruijtenberg, 2015, G1/S inhibitors and the SWI/SNF complex control cell-cycle exit during muscle differentiation., Cell, 162, 300, 10.1016/j.cell.2015.06.013

Saerens, 2005, Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies., J. Mol. Biol., 352, 597, 10.1016/j.jmb.2005.07.038

Sallee, 2018, Tissue-specific degradation of essential centrosome components reveals distinct microtubule populations at microtubule organizing centers., PLoS Biol., 16, 10.1371/journal.pbio.2005189

Sarov, 2006, A recombineering pipeline for functional genomics applied to Caenorhabditis elegans., Nat. Methods, 3, 839, 10.1038/nmeth933

Sarov, 2012, A genome-scale resource for in vivo tag-based protein function exploration in C. elegans., Cell, 150, 855, 10.1016/j.cell.2012.08.001

Schmidt, 2017, Two populations of cytoplasmic dynein contribute to spindle positioning in C. elegans embryos., J. Cell Biol., 216, 2777, 10.1083/jcb.201607038

Schmitt, 2012, Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans., PLoS One, 7, 10.1371/journal.pone.0043164

Schwartz, 2018, SapTrap Builder: A Desktop Utility for CRISPR Edit Design., MicroPublication Biol, 10.17912/M4QQ-2X02

Schwartz, 2018, SapTrap Vectors for Introducing Point Mutations with unc-119+ Selection, MicroPublication Biol, 10.17912/DDVH-BG64

Schwartz, 2016, SapTrap, a toolkit for high-throughput CRISPR/Cas9 gene modification in Caenorhabditis elegans., Genetics, 202, 1277, 10.1534/genetics.115.184275

Semple, 2010, Rapid selection of transgenic C. elegans using antibiotic resistance., Nat. Methods, 7, 725, 10.1038/nmeth.1495

Serrano-Saiz, 2018, BRN3-type POU homeobox genes maintain the identity of mature postmitotic neurons in nematodes and mice., Curr. Biol., 2813, 10.1016/j.cub.2018.06.045

Shalem, 2015, High-throughput functional genomics using CRISPR–Cas9., Nat. Rev. Genet., 16, 299, 10.1038/nrg3899

Shen, 2018, Identification of piRNA binding sites reveals the argonaute regulatory landscape of the C. elegans germline., Cell, 172, 937, 10.1016/j.cell.2018.02.002

Shen, 2014, Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development., Dev. Cell, 30, 625, 10.1016/j.devcel.2014.07.017

Shin-i, 1999, NEXTDB: the expression pattern map database for C. elegans., Genome Inform., 10, 213, 10.11234/gi1990.10.213

Shirayama, 2012, piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline., Cell, 150, 65, 10.1016/j.cell.2012.06.015

Siepel, 2005, Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes., Genome Res., 15, 1034, 10.1101/gr.3715005

Soulavie, 2018, The AFF-1 exoplasmic fusogen is required for endocytic scission and seamless tube elongation., Nat. Commun., 9, 1741, 10.1038/s41467-018-04091-1

Spieth, 1993, Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions., Cell, 73, 521, 10.1016/0092-8674(93)90139-H

Spradling, 1999, The Berkeley Drosophila genome project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes., Genetics, 153, 135, 10.1093/genetics/153.1.135

Stinchcomb, 1985, Extrachromosomal DNA transformation of Caenorhabditis elegans., Mol. Cell. Biol., 5, 3484, 10.1128/MCB.5.12.3484

Strome, 2001, Spindle dynamics and the role of γ-tubulin in early Caenorhabditis elegans embryos., Mol. Biol. Cell, 12, 1751, 10.1091/mbc.12.6.1751

Sugi, 2016, Genome editing in C. elegans and other nematode species., Int. J. Mol. Sci., 17, 295, 10.3390/ijms17030295

Theil, 2018, Post-transcriptional regulation by 3′ UTRs can be masked by regulatory elements in 5′ UTRs., Cell Rep., 22, 3217, 10.1016/j.celrep.2018.02.094

Timmons, 2001, Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans., Gene, 263, 103, 10.1016/S0378-1119(00)00579-5

Tintori, 2016, A transcriptional lineage of the early C. elegans embryo., Dev. Cell, 38, 430, 10.1016/j.devcel.2016.07.025

Tursun, 2009, A toolkit and robust pipeline for the generation of fosmid-based reporter genes in C. elegans., PLoS One, 4, 10.1371/journal.pone.0004625

Tzur, 2013, Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system., Genetics, 195, 1181, 10.1534/genetics.113.156075

Vallin, 2012, A genome-wide collection of Mos1 transposon insertion mutants for the C. elegans research community., PLoS One, 7, 10.1371/journal.pone.0030482

Varkey, 1995, The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin., Genes Dev., 9, 1074, 10.1101/gad.9.9.1074

Vastenhouw, 2003, A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans., Curr. Biol., 13, 1311, 10.1016/S0960-9822(03)00539-6

Vermeirssen, 2007, Matrix and Steiner-triple-system smart pooling assays for high-performance transcription regulatory network mapping., Nat. Methods, 4, 659, 10.1038/nmeth1063

Voutev, 2008, A “FLP-Out” system for controlled gene expression in Caenorhabditis elegans., Genetics, 180, 103, 10.1534/genetics.108.090274

Waaijers, 2013, CRISPR/Cas9-Targeted mutagenesis in Caenorhabditis elegans., Genetics, 195, 1187, 10.1534/genetics.113.156299

Walck-Shannon, 2016, CDC-42 orients cell migration during epithelial intercalation in the Caenorhabditis elegans epidermis., PLoS Genet., 12, 10.1371/journal.pgen.1006415

Wallrath, 1995, Position effect variegation in Drosophila is associated with an altered chromatin structure., Genes Dev., 9, 1263, 10.1101/gad.9.10.1263

Walton, 2017, Mapping Results for a Set of cGAL Effectors and Drivers., MicroPublication Biol, 10.17912/W2Q947

Wang, 2017, cGAL, a temperature-robust GAL4–UAS system for Caenorhabditis elegans., Nat. Methods, 14, 145, 10.1038/nmeth.4109

Wang, 2018, Split cGAL, an intersectional strategy using a split intein for refined spatiotemporal transgene control in Caenorhabditis elegans., Proc. Natl. Acad. Sci. USA, 115, 3900, 10.1073/pnas.1720063115

Wang, 2015, NOCA-1 functions with γ-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans., eLife, 4, 10.7554/eLife.08649

Wang, 2017, A toolkit for GFP-mediated tissue-specific protein degradation in C. elegans., Development, 144, 2694, 10.1242/dev.150094

Ward, 2015, Rapid and precise engineering of the Caenorhabditis elegans genome with lethal mutation Co-conversion and inactivation of NHEJ repair., Genetics, 199, 363, 10.1534/genetics.114.172361

Ward, 2015, Rendering the intractable more tractable: tools from Caenorhabditis elegans ripe for import into parasitic nematodes., Genetics, 201, 1279, 10.1534/genetics.115.182717

Wei, 2012, Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans., Nat. Methods, 9, 391, 10.1038/nmeth.1929

White, 2012, Sensation in a single neuron pair represses male behavior in hermaphrodites., Neuron, 75, 593, 10.1016/j.neuron.2012.03.044

Wightman, 1993, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans., Cell, 75, 855, 10.1016/0092-8674(93)90530-4

Williams, 2005, Characterization of Mos1-mediated mutagenesis in Caenorhabditis elegans: a method for the rapid identification of mutated genes., Genetics, 169, 1779, 10.1534/genetics.104.038265

Wood, 2011, Targeted genome editing across species using ZFNs and TALENs., Science, 333, 307, 10.1126/science.1207773

Wu, 2017, Hepta-mutant Staphylococcus aureus sortase A (SrtA7m) as a tool for in vivo protein labeling in Caenorhabditis elegans., ACS Chem. Biol., 12, 664, 10.1021/acschembio.6b00998

Wu, 2018, pirScan: a webserver to predict piRNA targeting sites and to avoid transgene silencing in C. elegans., Nucleic Acids Res., 46, W43, 10.1093/nar/gky277

Xu, 2015, The application of CRISPR-Cas9 genome editing in Caenorhabditis elegans., J. Genet. Genomics Yi Chuan Xue Bao, 42, 413, 10.1016/j.jgg.2015.06.005

Yochem, 2003, Investigating C. elegans development through mosaic analysis., Development, 130, 4761, 10.1242/dev.00701

Yoshina, 2016, Locus-specific integration of extrachromosomal transgenes in C. elegans with the CRISPR/Cas9 system., Biochem. Biophys. Rep., 5, 70, 10.1016/j.bbrep.2015.11.017

Yu, 2017, Convergent transcriptional programs regulate cAMP levels in C. elegans GABAergic motor neurons., Dev. Cell, 212, 10.1016/j.devcel.2017.09.013

Yuen, 2011, Rapid de novo centromere formation occurs independently of heterochromatin protein 1 in C. elegans embryos., Curr. Biol., 21, 1800, 10.1016/j.cub.2011.09.016

Zamanian, 2016, Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vector-borne nematode diseases., FEBS J., 283, 3204, 10.1111/febs.13781

Zetsche, 2015, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system., Cell, 163, 759, 10.1016/j.cell.2015.09.038

Zhang, 2014, Efficient site-specific editing of the C. elegans genome., bioRxiv, 10.1101/007344

Zhang, 2018, The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes., Science, 359, 587, 10.1126/science.aao2840

Zhang, 2014, CRISPR/Cas9 for genome editing: progress, implications and challenges., Hum. Mol. Genet., 23, R40, 10.1093/hmg/ddu125

Zhang, 2015, The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans., Development, 142, 4374, 10.1242/dev.129635

Zhang, 2018, A compartmentalized signaling network mediates crossover control in meiosis., eLife, 7, 10.7554/eLife.30789

Zhang, 2004, Combinatorial marking of cells and organelles with reconstituted fluorescent proteins., Cell, 119, 137, 10.1016/j.cell.2004.09.012

Zhang, 1998, A new logic for DNA engineering using recombination in Escherichia coli., Nat. Genet., 20, 123, 10.1038/2417

Zhao, 2014, Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system., Cell Res., 24, 247, 10.1038/cr.2014.9

Zhu, 2018, Histone H3K9 and H4 acetylations and transcription facilitate the initial CENP-AHCP-3 deposition and de novo centromere establishment in Caenorhabditis elegans artificial chromosomes., Epigenetics Chromatin, 11, 16, 10.1186/s13072-018-0185-1

Zilberman, 2017, Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epidermis., J. Cell Biol., 216, 3729, 10.1083/jcb.201611061

Zwaal, 1993, Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank., Proc. Natl. Acad. Sci. USA, 90, 7431, 10.1073/pnas.90.16.7431