The hyperthermophilic nature of the metallo-oxidase from Aquifex aeolicus

André T. Fernandes1, Lígia O. Martins1, Eduardo P. Melo2,3
1Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2781-901 Oeiras, Portugal
2Instituto de Biotecnologia e Bioengenharia, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
3Instituto de Biotecnologia e Bioengenharia, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Tài liệu tham khảo

Lindley, 2001, Multi-copper oxidases Solomon, 1996, Multicopper oxidases and oxygenases, Chem. Rev., 96, 2563, 10.1021/cr950046o Stoj, 2005, Copper proteins: oxidases, vol II, 1134 Fernandes, 2007, A robust metallo-oxidase from the hyperthermophilic bacterium Aquifex aeolicus, FEBS J., 274, 2683, 10.1111/j.1742-4658.2007.05803.x Eder, 2002, New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov., Extremophiles, 6, 309, 10.1007/s00792-001-0259-y Agostinelli, 1995, Stability of Japanese-lacquer-tree (Rhus vernicifera) laccase to thermal and chemical denaturation: comparison with ascorbate oxidase, Biochem. J., 306, 697, 10.1042/bj3060697 Durao, 2006, Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies, J. Biol. Inorg. Chem., 11, 514, 10.1007/s00775-006-0102-0 Durão, 2008, Copper incorporation into recombinant CotA-laccase from Bacillus subtilis: characterization of fully copper-loaded enzymes, J. Biol. Inorg. Chem., 13, 183, 10.1007/s00775-007-0312-0 Koroleva, 2001, Temperature-induced changes in copper centers and protein conformation of two fungal laccases from Coriolus hirsutus and Coriolus zonatus, Biochim. Biophys. Acta, 1547, 397, 10.1016/S0167-4838(01)00209-6 Savini, 1990, The role of copper in the stability of ascorbate oxidase towards denaturing agents, Eur. J. Biochem., 190, 491, 10.1111/j.1432-1033.1990.tb15600.x Alcaraz, 2004, Unfolding process of rusticyanin: evidence of protein aggregation, Eur. J. Biochem., 271, 4284, 10.1111/j.1432-1033.2004.04368.x Alcaraz, 2005, An NMR view of the unfolding process of rusticyanin: structural elements that maintain the architecture of a beta-barrel metalloprotein, Protein Sci., 14, 1710, 10.1110/ps.051337505 Bonander, 2000, Crystal structure o the disulfide bond-deficient azurin mutant C3A/C26A: how important is the S–S bond for folding and stability?, Eur. J. Biochem., 267, 4511, 10.1046/j.1432-1033.2000.01501.x Mei, 1999, The effect of pressure and guanidine hydrochloride on azurins mutated in the hydrophobic core, Eur. J. Biochem., 265, 619, 10.1046/j.1432-1327.1999.00751.x Pozdnyakova, 2001, Copper stabilizes azurin by decreasing the unfolding rate, Arch. Biochem. Biophys., 390, 146, 10.1006/abbi.2000.2369 Sedlak, 2007, Discrete roles of copper ions in chemical unfolding of human ceruloplasmin, Biochemistry, 46, 9638, 10.1021/bi700715e Brenner, 1995, A quantitative test for copper using bicinchoninic acid, Anal. Biochem., 226, 80, 10.1006/abio.1995.1194 Andrade, 2002, Biophys. J., 82, 1607, 10.1016/S0006-3495(02)75512-4 Fersht, 1999 Chothia, 1976, The nature of the accessible and buried surfaces in proteins, J. Mol. Biol., 105, 1, 10.1016/0022-2836(76)90191-1 Bento, 2005, Dioxygen reduction by multi-copper oxidases; a structural perspective, Dalton Trans., 7, 3507, 10.1039/b504806k Silow, 1999, Formation of short-lived protein aggregates directly from the coil in two-state folding, Biochemistry, 38, 13006, 10.1021/bi9909997 Pedersen, 2004, Modulation of S6 fibrillation by unfolding rates and gatekeeper residues, J. Mol. Biol., 341, 575, 10.1016/j.jmb.2004.06.020 Ricchelli, 2006, Aggregation/fibrillogenesis of recombinant human prion protein and Gerstmann–Sträussler–Scheinker disease peptides in the presence of metal ions, Biochemistry, 45, 6724, 10.1021/bi0601454 Plakoutsi, 2004, Aggregation of the Acylphosphatase from Sulfolobus solfataricus: the folded and partially unfolded states can both be precursors for amyloid formation, J. Biol. Chem., 279, 14111, 10.1074/jbc.M312961200 DeFelice, 2004, Formation of amyloid aggregates from human lysozyme and its disease-associated variants using hydrostatic pressure, FASEB J., 18, 1099, 10.1096/fj.03-1072fje Otzen, 2004, Correspondence between anomalous m- and DeltaCP-values in protein folding, Protein Sci., 13, 3253, 10.1110/ps.04991004 Pace, 1989, A new method for determining the heat capacity change for protein folding, Biochemistry, 28, 2520, 10.1021/bi00432a026 Scholtz, 1995, Conformational stability of HPr: the histidine-containing phosphocarrier protein from Bacillus subtilis, Protein Sci., 4, 35, 10.1002/pro.5560040106 Sedlák, 2008, Role of copper in thermal stability of human ceruloplasmin, Biophys. J., 94, 1384, 10.1529/biophysj.107.113696 Pace, 1997, Measuring the conformational stability of a protein, 299 Myers, 1995, Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding, Protein Sci., 4, 2138, 10.1002/pro.5560041020 Eftink, 1976, Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies, Biochemistry, 15, 672, 10.1021/bi00648a035 Eftink, 1977, Exposure of tryptophanyl residues and protein dynamics, Biochemistry, 16, 5546, 10.1021/bi00644a024 Burstein, 1973, Fluorescence and the location of tryptophan residues in proteins molecules, Photochem. Photobiol., 18, 263, 10.1111/j.1751-1097.1973.tb06422.x LeMaster, 2005, Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: spatial propagation of differential flexibility in rubredoxin hybrids, Proteins, 61, 608, 10.1002/prot.20594 Wintrode, 2003, Protein dynamics in a family of laboratory evolved thermophilic enzymes, J. Mol. Biol., 327, 745, 10.1016/S0022-2836(03)00147-5 Fitter, 2000, Structural equilibrium fluctuations in mesophilic and thermophilic alpha-amylase, Biophys. J., 79, 1629, 10.1016/S0006-3495(00)76413-7 diPatti, 1990, The multidomain structure of ceruloplasmin from calorimetric and limited proteolysis studies, J. Biol. Chem., 265, 21016, 10.1016/S0021-9258(17)45320-8 Zaitseva, 1996, The X-ray structure of human ceruloplasmin at 3.1 Å: nature of the copper centres, J. Biol. Inorg. Chem., 1, 15, 10.1007/s007750050018 Ma, 2005, The ligand geometry of copper determines the stability of amicyanin, Arch. Biochem. Biophys., 444, 27, 10.1016/j.abb.2005.09.016 Stathopulos, 2006, Calorimetric analysis of thermodynamic stability and aggregation for apo and holo amyotrophic lateral sclerosis-associated Gly-93 mutants of superoxide dismutase, J. Biol. Chem., 281, 6184, 10.1074/jbc.M509496200 Vassall, 2006, Equilibrium thermodynamics analysis of amyotrophic lateral sclerosis-associated mutant apo Cu,Zn superoxide dismutases, Biochemistry, 45, 7279, 10.1021/bi0600953 Moczygemba, 2001, High stability of a ferredoxin from the hyperthermophilic archaeon A. ambivalens: involvement of electrostatic interactions and cofactors, Protein Sci., 10, 1539, 10.1110/ps.49401 Stirpe, 2005, The ligand geometry of copper determines the stability of amicyanin, Biochim. Biophys. Acta, 1752, 47, 10.1016/j.bbapap.2005.07.004 Stirpe, 2006, A comparative investigation of the thermal unfolding of pseudoazurin in the Cu(II)-holo and apo form, Biopolymers, 83, 487, 10.1002/bip.20579 Pozdnyakova, 2001, Copper binding before polypeptide folding speeds up formation of active (holo) Pseudomonas aeruginosa azurin, Biochemistry, 40, 13728, 10.1021/bi011591o Baptista, 2003, A novel pathway to enzyme deactivation: the cutinase model, Biotechnol. Bioeng., 82, 851, 10.1002/bit.10641 Zettlmeissl, 1979, Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs reactivation. 1. Physical properties and kinetics of aggregation, Biochemistry, 18, 5567, 10.1021/bi00592a007 Daggett, 2000, Transition states in protein folding, 175 Milardi, 1998, Thermodynamics and kinetics of the thermal unfolding of plastocyanin, Eur. Biophys. J., 27, 273, 10.1007/s002490050134 Kumar, 2000, Factors enhancing protein thermostability, Protein Eng., 13, 179, 10.1093/protein/13.3.179 Robic, 2003, Role of residual structure in the unfolded state of a thermophilic protein, Proc. Natl. Acad. Sci. U. S. A., 100, 11345, 10.1073/pnas.1635051100 Zhou, 2002, Toward the physical basis of thermophilic proteins: linking of enriched polar interactions and reduced heat capacity of unfolding, Biophys. J., 83, 3126, 10.1016/S0006-3495(02)75316-2 Lee, 2005, Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein L30e, J. Mol. Biol., 348, 419, 10.1016/j.jmb.2005.02.052 Spolar, 1992, Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water, Biochemistry, 31, 3947, 10.1021/bi00131a009 Jaenicke, 1996, Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritime, Adv. Protein Chem., 48, 181, 10.1016/S0065-3233(08)60363-0 Vieille, 2001, Hyperthermophilic enzymes: sources, uses, and molecular mechanism for thermostability, Microbiol. Mol. Biol. Rev., 65, 1, 10.1128/MMBR.65.1.1-43.2001