The hitchhiker’s guide to the chemical-biological galaxy

Drug Discovery Today - Tập 23 - Trang 565-574 - 2018
Giulia Opassi1,2, Alessandro Gesù1,3, Alberto Massarotti1
1Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale ‘A. Avogadro’, L.go Donegani 2, 28100 Novara, Italy
2Current affiliation: Dept. of Chemistry – BMC, University of Uppsala, Husargatan 3, SE-751 23 Uppsala, Sweden
3Current affiliation: VaxYnethic s.r.l., ZI Sentino, 53040 Rapolano Terme (SI), Italy

Tài liệu tham khảo

Dobson, 2004, Chemical space and biology, Nature, 432, 824, 10.1038/nature03192 Lipinski, 2004, Navigating chemical space for biology and medicine, Nature, 432, 855, 10.1038/nature03193 Kirkpatrick, 2004, Chemical space, Nature, 432, 823, 10.1038/432823a CAS REGISTRY – The gold standard for chemical substance information, http://support.cas.org/content/chemical-substances Reymond, 2015, The chemical space project, ACC Chem. Res., 48, 722, 10.1021/ar500432k Visini, 2017, Fragment Database FDB-17, J. Chem. Inf. Model., 57, 700, 10.1021/acs.jcim.7b00020 Dorschner, 2011, TIN-a combinatorial compound collection of synthetically feasible multicomponent synthesis products, J. Chem. Inf. Model., 51, 986, 10.1021/ci100443x Massarotti, 2014, ZINClick: a database of 16 million novel, patentable, and readily synthesizable 1,4-disubstituted triazoles, J. Chem. Inf. Model., 54, 396, 10.1021/ci400529h Chevillard, 2015, SCUBIDOO: a large yet screenable and easily searchable database of computationally created chemical compounds optimized toward high likelihood of synthetic tractability, J. Chem. Inf. Model., 55, 1824, 10.1021/acs.jcim.5b00203 Abraham, 2017, Documenting and harnessing the biological potential of molecules in Distributed Drug Discovery (D3) virtual catalogs, Chem. Biol. Drug Des., 90, 909, 10.1111/cbdd.13012 Sterling, 2015, ZINC 15—ligand discovery for everyone, J. Chem. Inf. Model., 55, 2324, 10.1021/acs.jcim.5b00559 Lucas, 2015, The purchasable chemical space: a detailed picture, J. Chem. Inf. Model., 55, 915, 10.1021/acs.jcim.5b00116 Banerjee, 2015, Super Natural II—a database of natural products, Nucleic Acids Res., 43, D935, 10.1093/nar/gku886 Medina-Franco, 2015, Discovery and development of lead compounds from natural sources using computational approaches A2, 455 Lipinski, 1997, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev., 23, 3, 10.1016/S0169-409X(96)00423-1 Kim, 2016, PubChem substance and compound databases, Nucleic Acids Res., 44, D1202, 10.1093/nar/gkv951 Williams, 2008, Public chemical compound databases, Curr. Opin. Drug Discov. Dev., 11, 393 Bento, 2014, The ChEMBL bioactivity database: an update, Nucleic Acids Res., 42, D1083, 10.1093/nar/gkt1031 Gilson, 2016, BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology, Nucleic Acids Res., 44, D1045, 10.1093/nar/gkv1072 Bender, 2010, Compound bioactivities go public, Nat. Chem. Biol., 6, 309, 10.1038/nchembio.354 Nicola, 2012, Public domain databases for medicinal chemistry, J. Med. Chem., 55, 6987, 10.1021/jm300501t Groom, 2016, The Cambridge Structural Database, Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 72, 171, 10.1107/S2052520616003954 Grazulis, 2012, Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration, Nucleic Acids Res., 40, D420, 10.1093/nar/gkr900 Wishart, 2018, DrugBank 5.0: a major update to the DrugBank database for 2018, Nucleic Acids Res., 46, D1074, 10.1093/nar/gkx1037 Galloway, 2010, Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules, Nat. Commun., 1, 80, 10.1038/ncomms1081 Feher, 2003, Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry, J. Chem. Inf. Comput. Sci., 43, 218, 10.1021/ci0200467 Kato, 2016, Diversity-oriented synthesis yields novel multistage antimalarial inhibitors, Nature, 538, 344, 10.1038/nature19804 Noren-Muller, 2006, Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis, Proc. Natl. Acad. Sci. U. S. A., 103, 10606, 10.1073/pnas.0601490103 Kaiser, 2008, Biology-inspired synthesis of compound libraries, Cell. Mol. Life Sci., 65, 1186, 10.1007/s00018-007-7492-1 Deng, 2015, Discovery, SAR, and X-ray binding mode study of BCATm inhibitors from a novel DNA-encoded library, ACS Med. Chem. Lett., 6, 919, 10.1021/acsmedchemlett.5b00179 Deng, 2016, Discovery and optimization of potent, selective, and in vivo efficacious 2-Aryl benzimidazole BCATm inhibitors, ACS Med. Chem. Lett., 7, 379, 10.1021/acsmedchemlett.5b00389 Litovchick, 2015, Encoded library synthesis using chemical ligation and the discovery of sEH inhibitors from a 334-million member library, Sci. Rep., 5, 10916, 10.1038/srep10916 Ding, 2015, Discovery of potent and selective inhibitors for ADAMTS-4 through DNA-encoded library technology (ELT), ACS Med. Chem. Lett., 6, 888, 10.1021/acsmedchemlett.5b00138 Ahn, 2017, Allosteric ‘beta-blocker’ isolated from a DNA-encoded small molecule library, Proc. Natl. Acad. Sci. U. S. A., 114, 1708, 10.1073/pnas.1620645114 Soutter, 2016, Discovery of cofactor-specific, bactericidal Mycobacterium tuberculosis InhA inhibitors using DNA-encoded library technology, Proc. Natl. Acad. Sci. U. S. A., 113, E7880, 10.1073/pnas.1610978113 Goodnow, 2017, DNA-encoded chemistry: enabling the deeper sampling of chemical space, Nat. Rev. Drug Discov., 16, 131, 10.1038/nrd.2016.213 Li, 2015, Design, preparation, and selection of DNA-encoded dynamic libraries, Chem. Sci., 6, 7097, 10.1039/C5SC02467F Franzini, 2014, DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries, ACC Chem. Res., 47, 1247, 10.1021/ar400284t Franzini, 2016, Chemical space of DNA-encoded libraries, J. Med. Chem., 59, 6629, 10.1021/acs.jmedchem.5b01874 Forli, 2015, Charting a path to success in virtual screening, Molecules, 20, 18732, 10.3390/molecules201018732 Hoksza, 2014, Molpher: a software framework for systematic chemical space exploration, J. Cheminform., 6, 7, 10.1186/1758-2946-6-7 Koes, 2018, AnchorQuery: rapid online virtual screening for small-molecule protein–protein interaction inhibitors, Protein Sci., 27, 229, 10.1002/pro.3303 Sunseri, 2016, Pharmit: interactive exploration of chemical space, Nucleic Acids Res., 44, W442, 10.1093/nar/gkw287 Todeschini, 2009 Awale, 2017, WebMolCS: a web-based interface for visualizing molecules in three-dimensional chemical spaces, J. Chem. Inf. Model., 57, 643, 10.1021/acs.jcim.6b00690 Maggiora, 2014, Introduction to molecular similarity and chemical space, 1 Osolodkin, 2015, Progress in visual representations of chemical space, Expert Opin. Drug Discov., 10, 959, 10.1517/17460441.2015.1060216 Wu, 2016, Design of chemical space networks on the basis of Tversky similarity, J. Comput. Aided Mol. Des., 30, 1, 10.1007/s10822-015-9891-y Kunimoto, 2017, Tracing compound pathways using chemical space networks, MedChemComm, 8, 376, 10.1039/C6MD00628K Kunimoto, 2017, Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks, J. Comput. Aided Mol. Des., 31, 779, 10.1007/s10822-017-0061-2 de la Vega de Leon, 2016, Chemical space visualization: transforming multidimensional chemical spaces into similarity-based molecular networks, Future Med. Chem., 8, 1769, 10.4155/fmc-2016-0023 Kontijevskis, 2017, Mapping of drug-like chemical universe with reduced complexity molecular frameworks, J. Chem. Inf. Model., 57, 680, 10.1021/acs.jcim.7b00006 Gonzalez-Medina, 2016, Consensus diversity plots: a global diversity analysis of chemical libraries, J. Cheminform., 8, 63, 10.1186/s13321-016-0176-9 Capuzzi, 2017, Chembench: a publicly accessible, integrated cheminformatics Portal, J. Chem. Inf. Model., 57, 105, 10.1021/acs.jcim.6b00462 Awale, 2017, The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data, J. Cheminform., 9, 11, 10.1186/s13321-017-0199-x Buonfiglio, 2015, Investigating pharmacological similarity by charting chemical space, J. Chem. Inf. Model., 55, 2375, 10.1021/acs.jcim.5b00375 Gonzalez-Medina, 2017, Activity landscape plotter: a web-based application for the analysis of structure-activity relationships, J. Chem. Inf. Model., 57, 397, 10.1021/acs.jcim.6b00776 Sawyer, 2009, The race for chemical and biological space: drug discovery and innovative technologies, Chem. Biol. Drug Des., 73, 1, 10.1111/j.1747-0285.2008.00760.x Lander, 2001, Initial sequencing and analysis of the human genome, Nature, 409, 860, 10.1038/35057062 Venter, 2001, The sequence of the human genome, Science, 291, 1304, 10.1126/science.1058040 Hopkins, 2002, The druggable genome, Nat. Rev. Drug Discov., 1, 727, 10.1038/nrd892 Lazo, 2016, Drugging undruggable molecular cancer targets, Annu. Rev. Pharmacol. Toxicol., 56, 23, 10.1146/annurev-pharmtox-010715-103440 Uhlen, 2015, Proteomics: Tissue-based map of the human proteome, Science, 347, 1260419, 10.1126/science.1260419 Rose, 2017, The RCSB protein data bank: integrative view of protein, gene and 3D structural information, Nucleic Acids Res., 45, D271 Meyer, 2013, INstruct: a database of high-quality 3D structurally resolved protein interactome networks, Bioinformatics, 29, 1577, 10.1093/bioinformatics/btt181 Siragusa, 2015, BioGPS: navigating biological space to predict polypharmacology, off-targeting, and selectivity, Proteins, 83, 517, 10.1002/prot.24753 Vogt, 2010, Drug-target networks, Mol. Inform., 29, 10, 10.1002/minf.200900069 Yabuuchi, 2011, Analysis of multiple compound–protein interactions reveals novel bioactive molecules, Mol. Syst. Biol., 7, 472, 10.1038/msb.2011.5 Brown, 2012, Systems biology and systems chemistry: new directions for drug discovery, Chem. Biol., 19, 23, 10.1016/j.chembiol.2011.12.012 Hamanaka, 2017, CGBVS-DNN: prediction of compound-protein interactions based on deep learning, Mol. Inform., 36, 1600045, 10.1002/minf.201600045 Rastelli, 2015, Computational polypharmacology comes of age, Front. Pharmacol., 6, 157, 10.3389/fphar.2015.00157 Hu, 2017, Entering the ‘big data’ era in medicinal chemistry: molecular promiscuity analysis revisited, Future Sci. OA, 3, FSO179, 10.4155/fsoa-2017-0001 Tetko, 2016, BIGCHEM: challenges and opportunities for big data analysis in chemistry, Mol. Inform., 35, 615, 10.1002/minf.201600073 Dimova, 2016, Systematic design of analogs of active compounds covering more than 1000 targets, MedChemComm, 7, 859, 10.1039/C5MD00585J Altae-Tran, 2017, Low data drug discovery with one-shot learning, ACS Cent. Sci., 3, 283, 10.1021/acscentsci.6b00367 Ramsundar, 2017, Is multitask deep learning practical for pharma?, J. Chem. Inf. Model., 57, 2068, 10.1021/acs.jcim.7b00146 Liu, 2017, Drug discovery targeting bromodomain-containing protein 4, J. Med. Chem., 60, 4533, 10.1021/acs.jmedchem.6b01761 Toure, 2016, Small-molecule PROTACS: new approaches to protein degradation, Angew. Chem. Int. Ed. Engl., 55, 1966, 10.1002/anie.201507978 Valeur, 2017, New modalities for challenging targets in drug discovery, Angew. Chem. Int. Ed. Engl., 56, 10294, 10.1002/anie.201611914