The hat guessing number of graphs

Journal of Combinatorial Theory, Series B - Tập 144 - Trang 119-149 - 2020
Noga Alon1,2, Omri Ben-Eliezer3, Chong Shangguan4, Itzhak Tamo4
1Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
2Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel
3Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel
4Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv 6997801, Israel

Tài liệu tham khảo

Aggarwal, 2005, Derandomization of auctions, 619 Alon, 1999, Combinatorial Nullstellensatz, Comb. Probab. Comput., 8, 7, 10.1017/S0963548398003411 Alon, 2019, The hat guessing number of graphs, 490 Alon, 2017, Testing equality in communication graphs, IEEE Trans. Inf. Theory, 63, 7569, 10.1109/TIT.2017.2744608 Alon, 2016, The Probabilistic Method Alon, 1989, A nowhere-zero point in linear mappings, Combinatorica, 9, 393, 10.1007/BF02125351 Bar-Yossef, 2006, Index coding with side information, 197 Bhandari Butler, 2008, Hat guessing games, SIAM J. Discrete Math., 22, 592, 10.1137/060652774 Chakraborty, 2006, Zero error list-decoding capacity of the q/(q−1) channel, vol. 4337, 129 Chervak Ebert, 1998 Ebert, 2003, On the autoreducibility of random sequences, SIAM J. Comput., 32, 1542, 10.1137/S0097539702415317 Elias, 1988, Zero error capacity under list decoding, IEEE Trans. Inf. Theory, 34, 1070, 10.1109/18.21233 Erdős, 1975, Problems and results on 3-chromatic hypergraphs and some related questions, Colloq. Math. Soc. János Bolyai, 10, 609 Farnik, 2015 Feige, 2004 Fredman, 1984, On the size of separating systems and families of perfect hash functions, SIAM J. Algebraic Discrete Methods, 5, 61, 10.1137/0605009 Gadouleau, 2018, Finite dynamical systems, hat games, and coding theory, SIAM J. Discrete Math., 32, 1922, 10.1137/15M1044758 Gadouleau, 2015, New constructions and bounds for Winkler's hat game, SIAM J. Discrete Math., 29, 823, 10.1137/130944680 Gadouleau, 2011, Graph-theoretical constructions for graph entropy and network coding based communications, IEEE Trans. Inf. Theory, 57, 6703, 10.1109/TIT.2011.2155618 Haemers, 1979, On some problems of Lovász concerning the Shannon capacity of a graph, IEEE Trans. Inf. Theory, 25, 231, 10.1109/TIT.1979.1056027 Haemers, 1981, An upper bound for the Shannon capacity of a graph, vol. 25, 267 Körner, 1986, Fredman-Komlós bounds and information theory, SIAM J. Algebraic Discrete Methods, 7, 560, 10.1137/0607062 Krzywkowski, 2010, A modified hat problem, Comment. Math., 50, 121 Krzywkowski, 2012 Lubetzky, 2009, Nonlinear index coding outperforming the linear optimum, IEEE Trans. Inf. Theory, 55, 3544, 10.1109/TIT.2009.2023702 Peeters, 1996, Orthogonal representations over finite fields and the chromatic number of graphs, Combinatorica, 16, 417, 10.1007/BF01261326 Riis, 2007, Information flows, graphs and their guessing numbers, Electron. J. Comb., 14 Robinson, 2001, Why mathematicians now care about their hat color, N.Y. Times, 10 Shannon, 1956, The zero error capacity of a noisy channel, IRE Trans. Inf. Theory, IT-2, 8, 10.1109/TIT.1956.1056798 Shearer, 1985, On a problem of Spencer, Combinatorica, 5, 241, 10.1007/BF02579368 Szczechla, 2017, The three colour hat guessing game on cycle graphs, Electron. J. Comb., 24 Winkler, 2002, Games people don't play, 301