Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hệ vi sinh vật đường ruột: yếu tố quan trọng ảnh hưởng đến điều trị bệnh bạch cầu lymphoblastic cấp tính ở trẻ em
Annals of Hematology - Trang 1-15 - 2023
Tóm tắt
Bệnh bạch cầu lymphoblastic cấp tính (ALL) là dạng bệnh bạch cầu phổ biến nhất ở trẻ em. Hệ vi sinh vật đường ruột (GM) đóng vai trò quan trọng trong việc duy trì dinh dưỡng, miễn dịch và xung đột sinh học. Vì mối quan hệ giữa ALL và GM là hai chiều, sự xuất hiện và điều trị ALL có mối liên quan chặt chẽ đến sự tàn phá của GM và sự phát triển của miễn dịch suy yếu. Các nghiên cứu đã phát hiện ra sự thay đổi đáng kể trong GM ở bệnh nhân bị ALL, bao gồm sự giảm đa dạng, mà có thể trực tiếp do sự phát triển của ALL gây ra. Hóa trị, liệu pháp kháng sinh và cấy ghép tế bào gốc huyết học (HSCT) là những phương pháp điều trị chủ yếu cho bệnh ALL ở trẻ em. Những phương pháp này ảnh hưởng đến thành phần, sự đa dạng và số lượng của các vi sinh vật đường ruột, từ đó ảnh hưởng đến hiệu quả điều trị và có thể gây ra nhiều biến chứng khác nhau. Điều chỉnh GM có thể giúp hỗ trợ phục hồi cho bệnh nhân bị ALL. Bài viết này thảo luận về các phương pháp điều trị khác nhau cho bệnh ALL ở trẻ em và những ảnh hưởng tương ứng của chúng lên GM, cũng như những thay đổi của GM diễn ra ở trẻ em bị ALL từ khi chẩn đoán đến khi điều trị. Việc hiểu rõ hơn về mối liên hệ giữa ALL và GM được kỳ vọng sẽ giúp cải thiện điều trị cho bệnh ALL ở trẻ em trong tương lai.
Từ khóa
#bệnh bạch cầu lymphoblastic cấp tính #hệ vi sinh vật đường ruột #hóa trị #liệu pháp kháng sinh #cấy ghép tế bào gốc huyết họcTài liệu tham khảo
Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 373:1541–1552. https://doi.org/10.1056/NEJMra1400972
Torpy JM, Lynm C, Glass RM (2009) JAMA patient page. Acute lymphoblastic leukemia. JAMA 301:452. https://doi.org/10.1001/jama.301.4.452
Dzutsev A, Goldszmid RS, Viaud S et al (2015) The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol 45:17–31. https://doi.org/10.1002/eji.201444972
De Santis S, Cavalcanti E, Mastronardi M et al (2015) Nutritional keys for intestinal barrier modulation. Front Immunol 6:612. https://doi.org/10.3389/fimmu.2015.00612
Li W, Deng Y, Chu Q, Zhang P (2019) Gut microbiome and cancer immunotherapy. Cancer Lett 447:41–47. https://doi.org/10.1016/j.canlet.2019.01.015
Baugh CW, Wang TJ, Caterino JM et al (2017) Emergency department management of patients with febrile neutropenia: guideline concordant or overly aggressive? Acad Emerg Med 24:83–91. https://doi.org/10.1111/acem.13079
Derrien M, Alvarez A-S, de Vos WM (2019) The gut microbiota in the first decade of life. Trends Microbiol 27:997–1010. https://doi.org/10.1016/j.tim.2019.08.001
Sims TT, El Alam MB, Karpinets TV et al (2021) Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation. Commun Biol 4:237. https://doi.org/10.1038/s42003-021-01741-x
Liu X, Zou Y, Ruan M et al (2020) Pediatric acute lymphoblastic leukemia patients exhibit distinctive alterations in the gut microbiota. Front Cell Infect Microbiol 10:558799. https://doi.org/10.3389/fcimb.2020.558799
Chua LL, Rajasuriar R, Lim YAL et al (2020) Temporal changes in gut microbiota profile in children with acute lymphoblastic leukemia prior to commencement-, during-, and post-cessation of chemotherapy. BMC Cancer 20:151. https://doi.org/10.1186/s12885-020-6654-5
Wang Y, Xue J, Zhou X et al (2014) Oral microbiota distinguishes acute lymphoblastic leukemia pediatric hosts from healthy populations. PLoS ONE 9:e102116. https://doi.org/10.1371/journal.pone.0102116
Rajagopala SV, Singh H, Yu Y et al (2020) Persistent gut microbial dysbiosis in children with acute lymphoblastic leukemia (ALL) during chemotherapy. Microb Ecol 79:1034–1043. https://doi.org/10.1007/s00248-019-01448-x
Thomas R, Wong WSW, Saadon R et al (2020) Gut microbial composition difference between pediatric ALL survivors and siblings. Pediatr Hematol Oncol 37:475–488. https://doi.org/10.1080/08880018.2020.1759740
Hakim H, Dallas R, Wolf J et al (2018) Gut microbiome composition predicts infection risk during chemotherapy in children with acute lymphoblastic leukemia. Clin Infect Dis 67:541–548. https://doi.org/10.1093/cid/ciy153
Chua LL, Rajasuriar R, Azanan MS et al (2017) Reduced microbial diversity in adult survivors of childhood acute lymphoblastic leukemia and microbial associations with increased immune activation. Microbiome 5:35. https://doi.org/10.1186/s40168-017-0250-1
Huang Y, Yang W, Liu H et al (2012) Effect of high-dose methotrexate chemotherapy on intestinal Bifidobacteria, Lactobacillus and Escherichia coli in children with acute lymphoblastic leukemia. Exp Biol Med (Maywood) 237:305–311. https://doi.org/10.1258/ebm.2011.011297
De Pietri S, Ingham AC, Frandsen TL et al (2020) Gastrointestinal toxicity during induction treatment for childhood acute lymphoblastic leukemia: the impact of the gut microbiota. Int J Cancer 147:1953–1962. https://doi.org/10.1002/ijc.32942
Javed F, Utreja A, Bello Correa FO et al (2012) Oral health status in children with acute lymphoblastic leukemia. Crit Rev Oncol Hematol 83:303–309. https://doi.org/10.1016/j.critrevonc.2011.11.003
Sherborne AL, Hemminki K, Kumar R et al (2011) Rationale for an international consortium to study inherited genetic susceptibility to childhood acute lymphoblastic leukemia. Haematologica 96:1049–1054. https://doi.org/10.3324/haematol.2011.040121
Tasian SK, Loh ML, Hunger SP (2015) Childhood acute lymphoblastic leukemia: integrating genomics into therapy. Cancer 121:3577–3590. https://doi.org/10.1002/cncr.29573
Vicente-Dueñas C, Janssen S, Oldenburg M et al (2020) An intact gut microbiome protects genetically predisposed mice against leukemia. Blood 136:2003–2017. https://doi.org/10.1182/blood.2019004381
Wakabayashi K, Yano S, Kadowaki T et al (2012) Pulmonary actinomycosis caused by Actinomyces cardiffensis. Intern Med 51:2929–2931. https://doi.org/10.2169/internalmedicine.51.7997
Kushnareva MV, Keshishyan ES, Balashova ED (2019) The etiology of neonatal pneumonia, complicated by bronchopulmonary dysplasia. J Neonatal Perinatal Med 12:429–436. https://doi.org/10.3233/NPM-17159
Dixon SB, Chen Y, Yasui Y et al (2022) Impact of risk-stratified therapy on health status in survivors of childhood acute lymphoblastic leukemia: a report from the childhood cancer survivor study. Cancer Epidemiol Biomarkers Prev 31:150–160. https://doi.org/10.1158/1055-9965.EPI-21-0667
Robison LL, Hudson MM (2014) Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat Rev Cancer 14:61–70. https://doi.org/10.1038/nrc3634
Sági V, Makra N, Csoszánszki N et al (2022) The influence of the gut microbiome in paediatric cancer origin and treatment. Antibiotics (Basel) 11:1521. https://doi.org/10.3390/antibiotics11111521
Oldenburg M, Rüchel N, Janssen S et al (2021) The microbiome in childhood acute lymphoblastic leukemia. Cancers 13:4947. https://doi.org/10.3390/cancers13194947
Lähteenmäki K, Wacklin P, Taskinen M et al (2017) Haematopoietic stem cell transplantation induces severe dysbiosis in intestinal microbiota of paediatric ALL patients. Bone Marrow Transplant 52:1479–1482. https://doi.org/10.1038/bmt.2017.168
Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826. https://doi.org/10.1056/NEJMra052638
Schwabkey ZI, Jenq RR (2020) Microbiome anomalies in allogeneic hematopoietic cell transplantation. Annu Rev Med 71:137–148. https://doi.org/10.1146/annurev-med-052918-122440
Liu X, Zou Y, Zhang Y et al (2021) Characteristics in gut microbiome is associated with chemotherapy-induced pneumonia in pediatric acute lymphoblastic leukemia. BMC Cancer 21:1190. https://doi.org/10.1186/s12885-021-08917-y
Dunn KA, Connors J, Bielawski JP et al (2021) Investigating the gut microbial community and genes in children with differing levels of change in serum asparaginase activity during pegaspargase treatment for acute lymphoblastic leukemia. Leuk Lymphoma 62:927–936. https://doi.org/10.1080/10428194.2020.1850718
Jing D, Hua L, Wu Y et al (2018) Study on intestinal bacterial flora by fluorescent quantitative PCR in children with acute lymphoblastic leukemia of high-dose methotrexate therapy. Chinese Journal of Microecology 20:197–202
Song Y, Gyarmati P (2019) Bacterial translocation in acute lymphocytic leukemia. PLoS ONE 14:e0214526. https://doi.org/10.1371/journal.pone.0214526
Bai L, Zhou P, Li D, Ju X (2017) Changes in the gastrointestinal microbiota of children with acute lymphoblastic leukaemia and its association with antibiotics in the short term. J Med Microbiol 66:1297–1307. https://doi.org/10.1099/jmm.0.000568
Wolf J, Tang L, Flynn PM et al (2017) Levofloxacin prophylaxis during induction therapy for pediatric acute lymphoblastic leukemia. Clin Infect Dis 65:1790–1798. https://doi.org/10.1093/cid/cix644
Simona Z, Ondřej H, Jana P et al (2018) Occurrence and antibiotic resistance of Enterobacteriaceae in acute leukemia patients. Klin Onkol 31:282–288. https://doi.org/10.14735/amko2018282
Dunn KA, MacDonald T, Rodrigues GJ et al (2022) Antibiotic and antifungal use in pediatric leukemia and lymphoma patients are associated with increasing opportunistic pathogens and decreasing bacteria responsible for activities that enhance colonic defense. Front Cell Infect Microbiol 12:924707. https://doi.org/10.3389/fcimb.2022.924707
Ugrayová S, Švec P, Hric I et al (2022) Gut microbiome suffers from hematopoietic stem cell transplantation in childhood and its characteristics are positively associated with intra-hospital physical exercise. Biology (Basel) 11:785. https://doi.org/10.3390/biology11050785
Onciu M (2009) Acute lymphoblastic leukemia. Hematol Oncol Clin North Am 23:655–674. https://doi.org/10.1016/j.hoc.2009.04.009
Pui C-H, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354:166–178. https://doi.org/10.1056/NEJMra052603
Sly LM (2020) Gut microbes in pediatric ALL survivorship. Pediatr Hematol Oncol 37:451–454. https://doi.org/10.1080/08880018.2020.1793850
Graziani F, Pujol A, Nicoletti C et al (2016) Ruminococcus gnavus E1 modulates mucin expression and intestinal glycosylation. J Appl Microbiol 120:1403–1417. https://doi.org/10.1111/jam.13095
Lucafò M, Franzin M, Lagatolla C et al (2020) Emerging insights on the interaction between anticancer and immunosuppressant drugs and intestinal microbiota in pediatric patients. Clin Transl Sci 13:238–259. https://doi.org/10.1111/cts.12722
Maier L, Pruteanu M, Kuhn M et al (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555:623–628. https://doi.org/10.1038/nature25979
Asselin B, Rizzari C (2015) Asparaginase pharmacokinetics and implications of therapeutic drug monitoring. Leuk Lymphoma 56:2273–2280. https://doi.org/10.3109/10428194.2014.1003056
Story MD, Voehringer DW, Stephens LC, Meyn RE (1993) L-asparaginase kills lymphoma cells by apoptosis. Cancer Chemother Pharmacol 32:129–133. https://doi.org/10.1007/BF00685615
Toksvang LN, Lee SHR, Yang JJ, Schmiegelow K (2022) Maintenance therapy for acute lymphoblastic leukemia: basic science and clinical translations. Leukemia 36:1749–1758. https://doi.org/10.1038/s41375-022-01591-4
Teuffel O, Kuster SP, Hunger SP et al (2011) Dexamethasone versus prednisone for induction therapy in childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Leukemia 25:1232–1238. https://doi.org/10.1038/leu.2011.84
Franzin M, Stefančič K, Lucafò M et al (2021) Microbiota and drug response in inflammatory bowel disease. Pathogens 10:211. https://doi.org/10.3390/pathogens10020211
Ruiz L, Delgado S, Ruas-Madiedo P et al (2017) Bifidobacteria and their molecular communication with the immune system. Front Microbiol 8:2345. https://doi.org/10.3389/fmicb.2017.02345
Ding Y-H, Qian L-Y, Pang J et al (2017) The regulation of immune cells by Lactobacilli: a potential therapeutic target for anti-atherosclerosis therapy. Oncotarget 8:59915–59928. https://doi.org/10.18632/oncotarget.18346
Yang W, Cai J, Shen S et al (2021) Pulse therapy with vincristine and dexamethasone for childhood acute lymphoblastic leukaemia (CCCG-ALL-2015): an open-label, multicentre, randomised, phase 3, non-inferiority trial. Lancet Oncol 22:1322–1332. https://doi.org/10.1016/S1470-2045(21)00328-4
Ns P, Yt C, Jo G et al (2020) Neuroanatomical abnormalities related to dexamethasone exposure in survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 67:e27968. https://doi.org/10.1002/pbc.27968
Chandran P, Satthaporn S, Robins A, Eremin O (2003) Inflammatory bowel disease: dysfunction of GALT and gut bacterial flora (I). Surgeon 1:63–75. https://doi.org/10.1016/s1479-666x(03)80118-x
Hu Y, Feng Y, Wu J et al (2019) The gut microbiome signatures discriminate healthy from pulmonary tuberculosis patients. Front Cell Infect Microbiol 9:90. https://doi.org/10.3389/fcimb.2019.00090
He Y, Wen Q, Yao F et al (2017) Gut-lung axis: the microbial contributions and clinical implications. Crit Rev Microbiol 43:81–95. https://doi.org/10.1080/1040841X.2016.1176988
Garcia JB, Lei X, Wierda W et al (2013) Pneumonia during remission induction chemotherapy in patients with acute leukemia. Ann Am Thorac Soc 10:432–440. https://doi.org/10.1513/AnnalsATS.201304-097OC
Schoener CA, Carillo-Conde B, Hutson HN, Peppas NA (2013) An inulin and doxorubicin conjugate for improving cancer therapy. J Drug Deliv Sci Technol 23:111–118. https://doi.org/10.1016/s1773-2247(13)50018-9
Reyna-Figueroa J, Barrón-Calvillo E, García-Parra C et al (2019) Probiotic supplementation decreases chemotherapy-induced gastrointestinal side effects in patients with acute leukemia. J Pediatr Hematol Oncol 41:468–472. https://doi.org/10.1097/MPH.0000000000001497
Reyna-Figueroa J, Bejarano-Juvera AA, García-Parra C et al (2021) Decrease of postchemotherapy complications with the use of probiotics in children with acute lymphoblastic leukemia. J Pediatr Hematol Oncol 43:e457–e461. https://doi.org/10.1097/MPH.0000000000001956
Yang Y, Xia Y, Chen H et al (2016) The effect of perioperative probiotics treatment for colorectal cancer: short-term outcomes of a randomized controlled trial. Oncotarget 7:8432–8440. https://doi.org/10.18632/oncotarget.7045
Kotzampassi K, Stavrou G, Damoraki G et al (2015) A four-probiotics regimen reduces postoperative complications after colorectal surgery: a randomized, double-blind, placebo-controlled study. World J Surg 39:2776–2783. https://doi.org/10.1007/s00268-015-3071-z
Dabard J, Bridonneau C, Phillipe C et al (2001) Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Appl Environ Microbiol 67:4111–4118. https://doi.org/10.1128/AEM.67.9.4111-4118.2001
Miquel S, Martín R, Rossi O et al (2013) Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 16:255–261. https://doi.org/10.1016/j.mib.2013.06.003
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604
Frank DN, St Amand AL, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785. https://doi.org/10.1073/pnas.0706625104
Alexander S, Fisher BT, Gaur AH et al (2018) Effect of levofloxacin prophylaxis on bacteremia in children with acute leukemia or undergoing hematopoietic stem cell transplantation: a randomized clinical trial. JAMA 320:995–1004. https://doi.org/10.1001/jama.2018.12512
Tunyapanit W, Chelae S, Laoprasopwattana K (2018) Does ciprofloxacin prophylaxis during chemotherapy induce intestinal microflora resistance to ceftazidime in children with cancer? J Infect Chemother 24:358–362. https://doi.org/10.1016/j.jiac.2017.12.012
Brown PA, Shah B, Advani A et al (2021) Acute lymphoblastic leukemia, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 19:1079–1109. https://doi.org/10.6004/jnccn.2021.0042
Zhang X, Chen J, Han M-Z et al (2021) The consensus from the Chinese Society of hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J Hematol Oncol 14:145. https://doi.org/10.1186/s13045-021-01159-2
Yanir AD, Martinez CA, Sasa G et al (2018) Current allogeneic hematopoietic stem cell transplantation for pediatric acute lymphocytic leukemia: success, failure and future perspectives-a single-center experience, 2008 to 2016. Biol Blood Marrow Transplant 24:1424–1431. https://doi.org/10.1016/j.bbmt.2018.03.001
Dalle J-H, Balduzzi A, Bader P et al (2018) Allogeneic stem cell transplantation from HLA-mismatched donors for pediatric patients with acute lymphoblastic leukemia treated according to the 2003 BFM and 2007 international BFM studies: impact of disease risk on outcomes. Biol Blood Marrow Transplant 24:1848–1855. https://doi.org/10.1016/j.bbmt.2018.05.009
Masetti R, Muratore E, Gori D et al (2022) Allogeneic hematopoietic stem cell transplantation for pediatric acute myeloid leukemia in first complete remission: a meta-analysis. Ann Hematol 101:2497–2506. https://doi.org/10.1007/s00277-022-04965-x
Peled JU, Gomes ALC, Devlin SM et al (2020) Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. N Engl J Med 382:822–834. https://doi.org/10.1056/NEJMoa1900623
Shono Y, van den Brink MRM (2018) Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat Rev Cancer 18:283–295. https://doi.org/10.1038/nrc.2018.10
Okamoto Y, Nakazawa Y, Inoue M et al (2020) Hematopoietic stem cell transplantation in children and adolescents with nonremission acute lymphoblastic leukemia. Pediatr Blood Cancer 67:e28732. https://doi.org/10.1002/pbc.28732
Liu C, Frank DN, Horch M et al (2017) Associations between acute gastrointestinal GvHD and the baseline gut microbiota of allogeneic hematopoietic stem cell transplant recipients and donors. Bone Marrow Transplant 52:1643–1650. https://doi.org/10.1038/bmt.2017.200
Taur Y, Jenq RR, Perales M-A et al (2014) The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 124:1174–1182. https://doi.org/10.1182/blood-2014-02-554725
Taur Y, Xavier JB, Lipuma L et al (2012) Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 55:905–914. https://doi.org/10.1093/cid/cis580
Noor F, Kaysen A, Wilmes P, Schneider JG (2019) The gut microbiota and hematopoietic stem cell transplantation: challenges and potentials. J Innate Immun 11:405–415. https://doi.org/10.1159/000492943
Toubai T, Mathewson ND, Magenau J, Reddy P (2016) Danger signals and graft-versus-host disease: current understanding and future perspectives. Front Immunol 7:539. https://doi.org/10.3389/fimmu.2016.00539
Simms-Waldrip TR, Sunkersett G, Coughlin LA et al (2017) Antibiotic-induced depletion of anti-inflammatory clostridia is associated with the development of graft-versus-host disease in pediatric stem cell transplantation patients. Biol Blood Marrow Transplant 23:820–829. https://doi.org/10.1016/j.bbmt.2017.02.004
Fujimaki K, Maruta A, Yoshida M et al (2001) Immune reconstitution assessed during five years after allogeneic bone marrow transplantation. Bone Marrow Transplant 27:1275–1281. https://doi.org/10.1038/sj.bmt.1703056
Ingham AC, Kielsen K, Cilieborg MS et al (2019) Specific gut microbiome members are associated with distinct immune markers in pediatric allogeneic hematopoietic stem cell transplantation. Microbiome 7:131. https://doi.org/10.1186/s40168-019-0745-z
Muratore E, Leardini D, Baccelli F et al (2022) Nutritional modulation of the gut microbiome in allogeneic hematopoietic stem cell transplantation recipients. Front Nutr 9:993668. https://doi.org/10.3389/fnut.2022.993668
D’Amico F, Biagi E, Rampelli S et al (2019) Enteral nutrition in pediatric patients undergoing hematopoietic SCT promotes the recovery of gut microbiome homeostasis. Nutrients 11:E2958. https://doi.org/10.3390/nu11122958
Iyama S, Sato T, Tatsumi H et al (2014) Efficacy of enteral supplementation enriched with glutamine, fiber, and oligosaccharide on mucosal injury following hematopoietic stem cell transplantation. Case Rep Oncol 7:692–699. https://doi.org/10.1159/000368714
Andermann TM, Peled JU, Ho C et al (2018) The microbiome and hematopoietic cell transplantation: past, present, and future. Biol Blood Marrow Transplant 24:1322–1340. https://doi.org/10.1016/j.bbmt.2018.02.009
Gupta S, Allen-Vercoe E, Petrof EO (2016) Fecal microbiota transplantation: in perspective. Ther Adv Gastroenterol 9:229–239. https://doi.org/10.1177/1756283X15607414
Severyn CJ, Brewster R, Andermann TM (2019) Microbiota modification in hematology: still at the bench or ready for the bedside? Hematology 2019:303–314. https://doi.org/10.1182/hematology.2019000365
Merli P, Putignani L, Ruggeri A et al (2020) Decolonization of multi-drug resistant bacteria by fecal microbiota transplantation in five pediatric patients before allogeneic hematopoietic stem cell transplantation: gut microbiota profiling, infectious and clinical outcomes. Haematologica 105:2686–2690. https://doi.org/10.3324/haematol.2019.244210