The growth factor/cytokine midkine may participate in cytokine storm and contribute to the pathogenesis of severe acute respiratory syndrome coronavirus 2-infected patients

Sema Ketenci1, A. Şükrü Aynacıoğlu1
1Department of Medical Pharmacology, Faculty of Medicine, Istanbul Atlas University, Anadolu Cad. No:40, Kağıthane, 34408, Istanbul, Turkey

Tóm tắt

Abstract Background The current coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged in Wuhan, China, and has rapidly become a global challenge, creating major challenges to health systems in almost every country in the world it has turned into a pandemic. COVID-19 poses a risky clinical situation that can range from mild illness to severe respiratory failure, requiring admission to intensive care. Main body It is known that SARS-CoV-2 infection causes a cytokine storm in some critically ill patients. However, more and more evidence showed that there is a dramatic increase in cytokine levels in patients diagnosed with COVID-19. Midkine (MK) is involved in various physiological and pathological processes, which some of them are desired and beneficial such as controlling tissue repair and antimicrobial effects, but some others are harmful such as promoting inflammation, carcinogenesis, and chemoresistance. Also, MK is expressed in inflammatory cells and released by endothelial cells under hypoxic conditions. Conclusions Considering all this information, there are strong data that midkine, an important cytokine known to increase in inflammatory diseases, may be overexpressed in patients who are positive for COVID-19. The overexpression of MK reveals a picture leading to fibrosis and damage in the lung. Therefore, questions arise about how the expression  of  MK  changes in COVID-19 patients and can we use it as an inflammation biomarker or in the treatment protocol in the future.

Từ khóa


Tài liệu tham khảo

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382(8):727–733. https://doi.org/10.1056/NEJMoa2001017

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30;:]. Lancet. 2020;395(10223):497-506. doi:https://doi.org/10.1016/S0140-6736(20)30183-5

Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, Curtis HJ, Mehrkar A, Evans D, Inglesby P, Cockburn J, McDonald HI, MacKenna B, Tomlinson L, Douglas IJ, Rentsch CT, Mathur R, Wong AYS, Grieve R, Harrison D, Forbes H, Schultze A, Croker R, Parry J, Hester F, Harper S, Perera R, Evans SJW, Smeeth L, Goldacre B (2020) Factors associated with COVID-19-related death using OpenSAFELY. Nature. 584(7821):430–436. https://doi.org/10.1038/s41586-020-2521-4

Gao YM, Xu G, Wang B, Liu BC (2021) Cytokine storm syndrome in coronavirus disease 2019: a narrative review. J Intern Med. 289(2):147–161. https://doi.org/10.1111/joim.13144

Ye Q, Wang B, Mao J (2020) The pathogenesis and treatment of the ‘cytokine storm’ in COVID-19. J Infect. 80(6):607–613. https://doi.org/10.1016/j.jinf.2020.03.037

Kadomatsu K, Tomomura M, Muramatsu T (1988) cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun. 151(3):1312–1318. https://doi.org/10.1016/s0006-291x(88)80505-9

Weckbach LT, Preissner KT, Deindl E (2018) The role of midkine in arteriogenesis, involving mechanosensing, endothelial cell proliferation, and vasodilation. Int J Mol Sci. 19(9):2559. https://doi.org/10.3390/ijms19092559

Filippou PS, Karagiannis GS, Constantinidou A (2020) Midkine (MDK) growth factor: a key player in cancer progression and a promising therapeutic target. Oncogene. 39(10):2040–2054. https://doi.org/10.1038/s41388-019-1124-8

Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem. 132(3):359–371. https://doi.org/10.1093/oxfordjournals.jbchem.a003231

Muramatsu T (2010) Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc Jpn Acad Ser B Phys Biol Sci. 86(4):410–425. https://doi.org/10.2183/pjab.86.410

Takada T, Toriyama K, Muramatsu H, Song XJ, Torii S, Muramatsu T (1997) Midkine, a retinoic acid-inducible heparin-binding cytokine in inflammatory responses: chemotactic activity to neutrophils and association with inflammatory synovitis. J Biochem. 122(2):453–458. https://doi.org/10.1093/oxfordjournals.jbchem.a021773

Hobo A, Yuzawa Y, Kosugi T, Kato N, Asai N, Sato W, Maruyama S, Ito Y, Kobori H, Ikematsu S, Nishiyama A, Matsuo S, Kadomatsu K (2009) The growth factor midkine regulates the renin-angiotensin system in mice. J Clin Invest. 119(6):1616–1625. https://doi.org/10.1172/JCI37249

Channappanavar R, Perlman S (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 39(5):529–539. https://doi.org/10.1007/s00281-017-0629-x

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 426(6965):450–454. https://doi.org/10.1038/nature02145

Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG, Calfee CS (2019) Acute respiratory distress syndrome. Nat Rev Dis Primers. 5(1):18. https://doi.org/10.1038/s41572-019-0069-0

Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 94(7):e00127–e00120. https://doi.org/10.1128/JVI.00127-20

Hoffmann M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052

Lee KY (2017) Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy. Int J Mol Sci. 18(2):388. https://doi.org/10.3390/ijms18020388

Sarkar M, Niranjan N, Banyal PK (2017) Mechanisms of hypoxemia [published correction appears in Lung India. 2017;34(2):220]. Lung India. 34(1):47–60. https://doi.org/10.4103/0970-2113.197116

Gonzalez NC, Wood JG (2010) Alveolar hypoxia-induced systemic inflammation: what low PO(2) does and does not do. Adv Exp Med Biol. 662:27–32. https://doi.org/10.1007/978-1-4419-1241-1_3

Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med. 364(7):656–665. https://doi.org/10.1056/NEJMra0910283

Fröhlich S, Boylan J, McLoughlin P (2013) Hypoxia-induced inflammation in the lung: a potential therapeutic target in acute lung injury? Am J Respir Cell Mol Biol. 48(3):271–279. https://doi.org/10.1165/rcmb.2012-0137TR

Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S (2001) Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci U S A. 98(15):8798–8803. https://doi.org/10.1073/pnas.161272598

Watts ER, Walmsley SR (2019) Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends Mol Med. 25(1):33–46. https://doi.org/10.1016/j.molmed.2018.10.006

Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation [published correction appears in Cell. 2003 May 2;113(3):419]. Cell. 112(5):645–657. https://doi.org/10.1016/s0092-8674(03)00154-5

Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM, Cowburn AS, Johnson N, Chilvers ER (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med. 201(1):105–115. https://doi.org/10.1084/jem.20040624

Nizet V, Johnson RS (2009) Interdependence of hypoxic and innate immune responses. Nat Rev Immunol. 9(9):609–617. https://doi.org/10.1038/nri2607

Jahani M, Dokaneheifard S, Mansouri K (2020) Hypoxia: a key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J Inflamm (Lond). 17(1):33. https://doi.org/10.1186/s12950-020-00263-3

Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L (2020) Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin. 41(12):1539–1546. https://doi.org/10.1038/s41401-020-00554-8

Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair CN, Weber A, Barnes BJ, Egeblad M, Woods RJ, Kanthi Y, Knight JS (2020) Neutrophil extracellular traps in COVID-19. JCI Insight. 5(11):e138999. https://doi.org/10.1172/jci.insight.138999

Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M, Nascimento DC, Schneider AH, Caetité D, Tavares LA, Paiva IM, Rosales R, Colón D, Martins R, Castro IA, Almeida GM, Lopes MIF, Benatti MN, Bonjorno LP, Giannini MC, Luppino-Assad R, Almeida SL, Vilar F, Santana R, Bollela VR, Auxiliadora-Martins M, Borges M, Miranda CH, Pazin-Filho A, da Silva LLP, Cunha LD, Zamboni DS, Dal-Pizzol F, Leiria LO, Siyuan L, Batah S, Fabro A, Mauad T, Dolhnikoff M, Duarte-Neto A, Saldiva P, Cunha TM, Alves-Filho JC, Arruda E, Louzada-Junior P, Oliveira RD, Cunha FQ (2020) SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 217(12):e20201129. https://doi.org/10.1084/jem.20201129

Arcanjo A, Logullo J, Menezes CCB, de Souza Carvalho Giangiarulo TC, dos Reis MC, de Castro GMM, da Silva Fontes Y, Todeschini AR, Freire-de-Lima L, Decoté-Ricardo D, Ferreira-Pereira A, Freire-de-Lima CG, Barroso SPC, Takiya C, Conceição-Silva F, Savino W, Morrot A (2020) The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Sci Rep. 10(1):19630. https://doi.org/10.1038/s41598-020-76781-0

Reshi ML, Su YC, Hong JR (2014) RNA viruses: ROS-mediated cell death. Int J Cell Biol. 2014:467452–467416. https://doi.org/10.1155/2014/467452

Nguyen GT, Green ER, Mecsas J (2017) Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect Microbiol. 7:373. https://doi.org/10.3389/fcimb.2017.00373

Ikutomo M, Sakakima H, Matsuda F, Yoshida Y (2014) Midkine-deficient mice delayed degeneration and regeneration after skeletal muscle injury. Acta Histochem. 116(2):319–326. https://doi.org/10.1016/j.acthis.2013.08.009

Svensson SL, Pasupuleti M, Walse B, Malmsten M, Mörgelin M, Sjögren C, Olin AI, Collin M, Schmidtchen A, Palmer R, Egesten A (2010) Midkine and pleiotrophin have bactericidal properties: preserved antibacterial activity in a family of heparin-binding growth factors during evolution. J Biol Chem. 285(21):16105–16115. https://doi.org/10.1074/jbc.M109.081232

Kang HC, Kim IJ, Park HW, Jang SG, Ahn SA, Yoon SN, Chang HJ, Yoo BC, Park JG (2007) Regulation of MDK expression in human cancer cells modulates sensitivities to various anticancer drugs: MDK overexpression confers to a multi-drug resistance. Cancer Lett. 247(1):40–47. https://doi.org/10.1016/j.canlet.2006.03.017

Takenaka H, Horiba M, Ishiguro H, Sumida A, Hojo M, Usui A, Akita T, Sakuma S, Ueda Y, Kodama I, Kadomatsu K (2009) Midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction. Am J Physiol Heart Circ Physiol. 296(2):H462–H469. https://doi.org/10.1152/ajpheart.00733.2008

Sumida A, Horiba M, Ishiguro H, Takenaka H, Ueda N, Ooboshi H, Opthof T, Kadomatsu K, Kodama I (2010) Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction. Cardiovasc Res. 86(1):113–121. https://doi.org/10.1093/cvr/cvp386

Maruyama K, Muramatsu H, Ishiguro N, Muramatsu T (2004) Midkine, a heparin-binding growth factor, is fundamentally involved in the pathogenesis of rheumatoid arthritis. Arthritis Rheum. 50(5):1420–1429. https://doi.org/10.1002/art.20175

Wang J, Takeuchi H, Sonobe Y, Jin S, Mizuno T, Miyakawa S, Fujiwara M, Nakamura Y, Kato T, Muramatsu H, Muramatsu T, Suzumura A (2008) Inhibition of midkine alleviates experimental autoimmune encephalomyelitis through the expansion of regulatory T cell population. Proc Natl Acad Sci U S A. 105(10):3915–3920. https://doi.org/10.1073/pnas.0709592105

Sato W, Kadomatsu K, Yuzawa Y, Muramatsu H, Hotta N, Matsuo S, Muramatsu T (2001) Midkine is involved in neutrophil infiltration into the tubulointerstitium in ischemic renal injury. J Immunol. 167(6):3463–3469. https://doi.org/10.4049/jimmunol.167.6.3463

Shindo E, Nanki T, Kusunoki N, Shikano K, Kawazoe M, Sato H, Kaneko K, Muraoka S, Kaburaki M, Akasaka Y, Shimada H, Hasunuma T, Kawai S (2017) The growth factor midkine may play a pathophysiological role in rheumatoid arthritis. Mod Rheumatol. 27(1):54–59. https://doi.org/10.1080/14397595.2016.1179860

You Z, Dong Y, Kong X, Beckett LA, Gandour-Edwards R, Melamed J (2008) Midkine is a NF-kappaB-inducible gene that supports prostate cancer cell survival. BMC Med Genomics. 1(1):6. https://doi.org/10.1186/1755-8794-1-6

Taniguchi-Ponciano K, Vadillo E, Mayani H, Gonzalez-Bonilla CR, Torres J, Majluf A, Flores-Padilla G, Wacher-Rodarte N, Galan JC, Ferat-Osorio E, Blanco-Favela F, Lopez-Macias C, Ferreira-Hermosillo A, Ramirez-Renteria C, Peña-Martínez E, Silva-Román G, Vela-Patiño S, Mata-Lozano C, Carvente-Garcia R, Basurto-Acevedo L, Saucedo R, Piña-Sanchez P, Chavez-Gonzalez A, Marrero-Rodríguez D, Mercado M (2021) Increased expression of hypoxia-induced factor 1α mRNA and its related genes in myeloid blood cells from critically ill COVID-19 patients. Ann Med. 53(1):197–207. https://doi.org/10.1080/07853890.2020.1858234

Reynolds PR, Mucenski ML, Le Cras TD, Nichols WC, Whitsett JA (2004) Midkine is regulated by hypoxia and causes pulmonary vascular remodeling. J Biol Chem. 279(35):37124–37132. https://doi.org/10.1074/jbc.M405254200

Zhang R, Pan Y, Fanelli V, Wu S, Luo AA, Islam D, Han B, Mao P, Ghazarian M, Zeng W, Spieth PM, Wang D, Khang J, Mo H, Liu X, Uhlig S, Liu M, Laffey J, Slutsky AS, Li Y, Zhang H (2015) Mechanical stress and the induction of lung fibrosis via the midkine signaling pathway. Am J Respir Crit Care Med. 192(3):315–323. https://doi.org/10.1164/rccm.201412-2326OC

Misa K, Tanino Y, Wang X et al (2017) Involvement of midkine in the development of pulmonary fibrosis. Physiol Rep 5(16):e13383. https://doi.org/10.14814/phy2.13383