The growth, collapse and quiescence of Teno volcano, Tenerife: new constraints from paleomagnetic data
Tóm tắt
Tenerife basically consists of three Miocene shield volcanoes, the Anaga, the Teno and Central shield, as well as the Pliocene Cañadas volcano. The temporal evolution and structural significance of each volcano with respect to the history of Tenerife is still a matter of debate. We present paleomagnetic results in order to enhance the view of the volcanic history of the Teno volcano by means of magnetostratigraphy. It is found that the initial subaerial phase shows reverse magnetizations throughout. After two major sector collapses, dominantly normally magnetized lavas extruded. Comparisons of observed magnetic polarities with the geomagnetic polarity timescale show that these volcanic activities occurred within 0.4 Myr between 6.3 and 5.9 Ma. Significantly younger flows, ∼ 5.3 Myr old according to their radiometric age, revealed again normal polarity throughout. The absence of inversely magnetized lavas in-between the two normal periods indicates a volcanic hiatus or erosional phase. The evolutionary sequence and the estimated high production rates for the initial building phase are similar as would be expected for a hotspot volcano. The average geomagnetic field for 6.0 ± 0.2 Ma is close to an axial dipole field showing a slight far-sided/right-handed effect. The field strength, determined by Thellier-type intensity determinations, corresponds to a virtual axial dipole moment of 4.9 × 1022 A m2. This value is approximately half of the present day field strength, but similar to values obtained for the mid-Miocene. It also corresponds to the proposed tertiary low-field level of the geomagnetic dipole moment.
Tài liệu tham khảo
Ancochea E, Fuster JM, Ibarrola E, Cendrero A, Coello J, Hernan F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K–Ar data. J Volcanol Geoth Res 44:231–249
Anguita F, Hernán F (1975) A propagating fracture model versus a hot-spot origin for the Canary Islands. Earth Planet Sci Lett 27:11–19
Anguita F, Hernán F (2000) The Canary Islands origin: a unifying model. J Volcanol Geoth Res 103:1–26
van den Bogaard P, Schmincke HU (1998) Chronostratigraphy of Gran Canaria. In: Weaver PPE, Schmincke HU, Firth JV, Duffield W (eds) Proceedings of the ODP, Scientific Results, vol 157, College Station, TX (Ocean Drilling Program), pp 127–140
Butler RF (1992) Paleomagnetism: magnetic domains to geologic terranes, 356. Blackwell Scientific Publications, Oxford
Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. J Geophys Res 100:6093–6095
Cantagrel JM, Arnaud NO, Ancochea E, Fuster JM, Huertas MJ (1999) Repeated debris avalanches on Tenerife and genesis of Las Canadas caldera wall (Canary Islands). Geology 27:739–742
Carracedo JC (1979) Paleomagnetismo e historia volcanica de Tenerife. Aula de Cultura del Cabildo Insular de Tenerife, Tenerife, Espana, 82
Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparison with Hawaiian volcanoes. J Volcanol Geoth Res 94:1–19
Carracedo JC, Day SJ, Guillou H, Rodriguez Badiola E, Canas JA, Pérez Torrado FJ (1998) Hotspot volcanism close to a passive continental margin: the Canary Islands. Geol Mag 135:591–604
Coe RS, Grommé S, Mankinen EA (1978) Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipol low. J Geophys Res 83:1740–1756
Cox A (1969) Confidence limits for the precision parameter k. Geophys J R Astron Soc 18:545–549
Day R, Fuller MD, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain size and composition dependence. Phys Earth Planet Inter 13:260–266
Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond A 217:295–305
Fuster JM, Araña V, Brandle JM, Navarro M, Alonso U, Aparicio A (1968) Geologia y Volcanologia de las Islas Canarias: Tenerife, 195. Instituto Lucas Mallada, Madrid
Guillou H, Carracedo JC, Pérez Torrado FJ, Rodriguez Badiola E (1996) K–Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. J Volcanol Geoth Res 73:141–155
Guillou H, Carracedo JC, Duncan RA (2001) K–Ar, 40Ar–39Ar ages and magnetostratigraphy of Brunhes and Matuyama lava sequences from La Palma Island. J Volcanol Geoth Res 106:175–194
Guillou H, Carracedo JC, Paris R, Pérez Torrado FJ (2004) Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth Planet Sci Lett 222:599–614
Heller R, Merrill RT, McFadden PL (2002) The variation of intensity of the Earth’s magnetic field with time. Phys Earth Planet Inter 131:237–249
Heller R, Merrill RT, McFadden PL (2003) The two states of paleomagnetic field intensities for the past 320 million years. Phys Earth Planet Inter 135:211–223
Hoernle K, Schmincke HU (1993) The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J Petrol 34:599–626
Juárez MT, Tauxe L, Gee JS, Pick T (1998) The intensity of the Earth’s magnetic field over the past 160 million years. Nature 394:878–881
Krása D, Heunemann C, Leonhardt R, Petersen N (2003) Experimental procedure to detect multidomain remanence during Thellier–Thellier experiments. Phys Chem Earth 28:681–687
Kristjansson L, Hardarson BS, Aundunsson H (2003) A detailed palaeomagnetic study of the oldest (∼15 Myr) lava sequence in Northwest Iceland. Geophys J Int 155:991–1005
Langenheim VAM, Clague DA (1987) The Hawaiian–Emperor volcanic chain. Part II. Stratigraphic framework of volcanic rocks of the Hawaiian Islands. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. U.S. Geological Survey, Denver, pp 55–84
Leonhardt R, Soffel HC (2002) A reversal of the Earth’s magnetic field recorded in mid Miocene lava flows of Gran Canaria: paleointensities. J Geophys Res 107:2299. DOI 10.1029/2001JB000949
Leonhardt R, Hufenbecher F, Heider F, Soffel H (2000) High absolute paleointensity during a mid Miocene excursion of the Earth’s magnetic field. Earth Planet Sci Lett 184:141–154
Leonhardt R, Matzka J, Menor EA (2003) Absolute paleointensities and paleodirections from Fernando de Noronha, Brazil. Phys Earth Planet Inter 139:285–303
Leonhardt R, Heunemann C, Krása D (2004a) Analyzing absolute paleointensity determinations: acceptance criteria and the software ThellierTool4.0. Geochem Geophys Geosyst 5:Q12016. DOI 10.1029/2004GC000807
Leonhardt R, Krása D, Coe RS (2004b) Multidomain behavior during Thellier paleointensity experiments: a phenomenological model. Phys Earth Planet Inter 147:127–140
McDougall I, Schmincke HU (1976) Geochronology of Gran Canaria, Canary Islands: age of shield building volcanism and other magmatic phases. Bull Volcanol 40:57–77
McElhinny MW, McFadden PL (1997) Palaeosecular variation over the past 5 Myr based on a new generalized database. Geophys J Int 131:240–252
McFadden PL, McElhinny MW (1988) The combined analysis of remagnetization circles and direct observations in palaeomagnetism. Earth Planet Sci Lett 87:161–172
Moore JG, Clague DA (1992) Volcano growth and evolution of the island of Hawaii. Geol Soc Am Bull 104:1471–1484
Morgan WJ (1983) Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94:123–139
Paris R, Guillou H, Carracedo JC, Pérez Torrado FJ (2005) Volcanic and morphological evolution of La Gomera (Canary Islands) based on new K/Ar ages and magnetic stratigraphy: implications for oceanic islands evolution. J Geol Soc Lond 162:1–16
Prévot M, Mankinen EA, Coe RS, Grommé S (1985) The Steens Mountain (Oregon) geomagnetic polarity transition 2. Field intensity variations and discussion of reversal models. J Geophys Res 90:10417–10448
Riisager P, Riisager J (2001) Detecting multidomain magnetic grains in Thellier paleointensity experiments. Phys Earth Planet Inter 125:111–117
Schmincke HU (1973) Magmatic evolution and tectonic regime in the Canary, Madeira, and Azores Islands groups. Geol Soc Am Bull 84:633–648
Schmincke HU (1979) Age and crustal structure of the Canary Islands. J Geophys 46:217–224
Selkin PA, Tauxe L (2000) Long-term variations in paleointensity. Philos Trans R Soc Lond 358:1065–1088
Shcherbakov VP, Solodovnikov GM, Sycheva NK (2002) Variations in the geomagnetic dipole during the past 400 million years (Volcanic rocks). Izv Acad Sci USSR Phys Solid Earth Engl Trans 38:113–119
Smith KL, Milnes AR, Eggleton RA (1987) Weathering of basalts: formation of iddingsite. Clays Clay Miner 35:418–428
Thirlwall MF, Singer BS, Marriner GF (2000) 39Ar–40Ar ages and geochemistry of the basaltic shield stage of Tenerife, Canary Islands, Spain. J Volcanol Geoth Res 103:247–297
Valet JP, Brassart J, Le Meur I, Soler V, Quidelleur X, Tric E, Gillot PY (1996) Absolute paleointensity and magnetomineralogical changes. J Geophys Res 101:25029–25044
Valet JP, Brassat J, Quidelleur X, Soler V, Gillot PY, Hongre L (1999) Paleointensity variations across the last geomagnetic reversal at La Palma, Canary Islands, Spain. J Geophys Res 104:7577–7598
Walter TA (2003) Buttressing and fractional spreading of Tenerife, an experimental approach on the formation of rift zones. Geophys Res Lett 30:1296. DOI 10.1029/2002GL016610
Walter TR, Schmincke HU (2002) Rifting, recurrent landsliding and Miocene structural reorganization on NW-Tenerife (Canary Islands). Int J Earth Sci (Geol Rundsch) 91:615–628
Watts AB (1994) Crustal structure, gravity anomalies and flexure of the lithosphere in the vicinity of the Canary islands. Geophys J Int 119:648–666
Watts AB, Masson DG (2001) New sonar evidence for recent catastrophic collapses of the north flank of Tenerife, Canary Islands. Bull Volcanol 63:8–19
Watts AB, Peirce C, Collier J, Dalwood R, Canales JP, Henstock TJ (1997) A seismic study of lithospheric flexure in the vicinity of Tenerife, Canary Islands. Earth Planet Sci Lett 146:431–447
Wilson RL (1970) Permanent aspects of the Earth’s non-dipol magnetic field over the Upper Tertiary times. Geophys J R Astron Soc 19:417–437