The global significance of omitting soil erosion from soil organic carbon cycling schemes

Nature Climate Change - Tập 6 Số 2 - Trang 187-191 - 2016
Adrian Chappell1, Jeff Baldock2, Jonathan Sanderman2
1CSIRO Land and Water, GPO Box 1666, Canberra, Australian Capital Territory 2601, Australia
2CSIRO, Agriculture, Urrbrae, South Australia 5064, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

King, A. W., Post, W. M. & Wullschleger, S. D. The potential response of terrestial carbon storage to changes in climate and atmospheric CO2 . Climatic Change 35, 199–227 (1997).

Jenkinson, D. S. The turnover of organic carbon and nitrogen in soil. Phil. Trans. R. Soc. Lond. B 329, 361–368 (1990).

Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2013).

Tian, H. et al. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Glob. Biogeochem. Cycles 29, 775–792 (2015).

Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

Lal, R. Soil erosion and the global carbon budget. Environ. Int. 29, 437–450 (2003).

IPCC Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Report of the Intergovernment Panel on Climate Change (eds Houghton, J. T., Callander, B. A. & Varney, S. K.) (Cambridge Univ. Press, 1992).

Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, L08707 (2006).

Potter, C. S. et al. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 7, 811–841 (1993).

Lal, R. Soil degradation by erosion. Land Degrad. Dev. 12, 519–539 (2001).

Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl Acad. Sci. USA 104, 13268–13272 (2007).

Chappell, A., Viscarra Rossel, R. A. & Loughran, R. Spatial uncertainty of 137Cs-derived net (1950s–1990) soil redistribution for Australia. J. Geophys. Res. 116, F04015 (2011).

Chappell, A. et al. The dynamics of soil redistribution and the implications for soil organic carbon accounting in agricultural south-eastern Australia. Glob. Change Biol. 18, 2081–2088 (2012).

Marx, S. K. et al. Unprecedented wind erosion and perturbation of surface geochemistry marks the Anthropocene in Australia. J. Geophys. Res. 119, 45–61 (2014).

CSIRO & Bureau of Meteorology Climate Change in Australia Information for Australia’s Natural Resource Management Regions Technical Report (CSIRO and Bureau of Meteorology, 2015).

Van Oost, K. et al. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626–629 (2007).

Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci. 3, 311–314 (2010).

Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. 51, 1173–1179 (1987).

McCown, R. L. APSIM: A novel software system for model development, model testing, and simulation in agricultural systems research. Agric. Syst. 50, 255–271 (1996).

Wang, Y.-P., Law, R. M. & Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).

Skjemstad, J. O., Spouncer, L. R., Cowie, B. & Swift, R. S. Calibration of the Rothamsted organic turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Aust. J. Soil Res. 42, 79–88 (2004).

Doetterl, S., Van Oost, K. & Six, J. Towards constraining the magnitude of global agricultural sediment and soil organic carbon fluxes. Earth Surf. Process. Landf. 37, 642–655 (2012).

Department of Environment (2011) Australian National Greenhouse Gas Inventory, Kyoto Protocol Accounting Framework (accessed 28 March, 2014); http://ageis.climatechange.gov.au

Luo, Z., Wang, E., Baldock, J. & Xing, H. Potential soil organic carbon stock and its uncertainty under various cropping systems in Australian Cropland. Soil Res. 52, 463–475 (2014).

Dalal, R. C. & Chan, K. Y. Soil organic matter in rainfed cropping systems of the Australian cereal belt. Aust. J. Soil Res. 39, 435–464 (2001).

Smith, S. V., Renwick, W. H., Buddemeier, R. W. & Crossland, C. J. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Glob. Biogeochem. Cycles 15, 697–707 (2001).

Gregorich, E. G., Greer, K. J., Anderson, D. W. & Liang, B. C. Carbon distribution and losses: Erosion and deposition effects. Soil Tillage Res. 47, 291–302 (1998).

Chappell, A., Webb, N. P., Viscarra Rossel, R. A. & Bui, E. Australian net (1950s–1990) soil organic carbon erosion: Implications for CO2 emission and land-atmosphere modelling. Biogeosciences 11, 6793–6814 (2014).

Harden, J. W. et al. Dynamic replacement and loss of soil carbon on eroding cropland. Glob. Biogeochem. Cycles 13, 885–901 (1999).

Berhe, A. A., Harte, J., Harden, J. W. & Torn, M. S. The significance of the erosion-induced terrestrial carbon sink. BioSciences 57, 337–346 (2007).