The global compendium of Aedes aegypti and Ae. albopictus occurrence

Scientific data - Tập 2 Số 1
Moritz U. G. Kraemer1, Marianne Sinka2,3, Kirsten A. Duda1, Adrian Mylne2,3, Freya M. Shearer2,3, Oliver J. Brady2,3, Jane P. Messina1, Christopher M. Barker4,5, Chester G. Moore6, Roberta Gomes Carvalho7, Giovanini Evelim Coelho7, Wim Van Bortel8, Guy Hendrickx9, Francis Schaffner9, William Wint10, Iqbal Elyazar11, Hwa‐Jen Teng12, Simon I Hay1,13
1Department of Zoology, Spatial Ecology and Epidemiology Group, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
2Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
3Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
4Center for Vectorborne Diseases, University of California, Davis, CA, USA
5Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA USA
6Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
7National Dengue Control Program, Ministry of Health, Brasilia, DF, Brazil
8European Centre for Disease Prevention and Control, Stockholm, Sweden
9Avia-GIS, Zoersel, Belgium
10Department of Zoology, Environmental Research Group Oxford Ltd, South Parks Road, Oxford, OX1 3PS, UK
11Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
12Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan (ROC)
13Fogarty International Center, National Institutes of Health, Bethesda, 20892, Maryland, USA

Tóm tắt

Abstract

Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.

Từ khóa


Tài liệu tham khảo

Reinert, J. F., Harbach, R. E. & Kitching, I. J. Phylogeny and classification of tribe Aedini (Diptera: Culicidae) . Zool. J. Linn. Soc. 157, 700–794 (2009).

Hay, S. I. et al. Global mapping of infectious disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci 368, 20120250 (2013).

Juliano, S. a. & Philip Lounibos, L. Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol. Lett. 8, 558–574 (2005).

Morrison, A. C., Zielinski-Gutierrez, E., Scott, T. W. & Rosenberg, R. Defining challenges and proposing solutions for control of the virus vector Aedes aegypti . PLoS Med. 5, e68 (2008).

Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).

Staples, J. E. & Fischer, M. Chikungunya virus in the Americas—what a vectorborne pathogen can do. N. Engl. J. Med. 371, 887–889 (2014).

Sharp, T. M. et al. Chikungunya Cases Identified Through Passive Surveillance and Household Investigations—Puerto Rico, May 5—August 12, 2014. MMWR Morb Mortal Wkly Rep. 63, 500–501 (2014).

Powers, A. M. Chikungunya virus control: is a vaccine on the horizon? Lancet 384, 2008–2009 (2014).

Schaffner, F., Medlock, J. M. & Van Bortel, W. Public health significance of invasive mosquitoes in Europe. Clin. Microbiol. Infect. 19, 685–692 (2013).

Garske, T. et al. Yellow Fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med. 11, e1001638 (2014).

Powell, J. R. & Tabachnick, W. J. History of domestication and spread of Aedes aegypti—a review. Mem. Inst. Oswaldo Cruz 108(Suppl.), 11–17 (2013).

Delatte, H. et al. Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a Chikungunya epidemic event. Vector borne zoonotic Dis. 8, 25–34 (2008).

Zouache, K. et al. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc. R. Soc. Biol. Sci. 281, 20141078 (2014).

Gubler, D. J. Prevention and Control of Aedes aegypti-borne Diseases: Lesson Learned from Past Successes and Failures. AsPac J. Mol. Biol. Biotechnol. 19, 111–114 (2011).

Schaffner, F. & Mathis, A. Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future. Lancet. Infect. Dis. 14, 1271–1280 (2014).

Honório, N. A. et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–198 (2003).

Schaffner, F. et al. Development of guidelines for the surveillance of invasive mosquitoes in Europe. Parasit. Vectors 6, 209 (2013).

Schaffner, F., Kaufmann, C., Pflüger, V. & Mathis, A. Rapid protein profiling facilitates surveillance of invasive mosquito species. Parasit. Vectors 7, 142 (2014).

Carvalho, R. G., Lourenço-de-Oliveira, R. & Braga, I. A. Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Mem. Inst. Oswaldo Cruz 109, 787–796 (2014).

Coelho, G. E. Challenges in the control of Aedes aegypti . Rev. Inst. Med. Trop. Sao Paolo 54, S13–S14 (2012).

Food and Agricultural Organization of the United Nations. The Global Administrative Unit Layers (GAUL): Technical Aspects. Food Agric. Organ. United Nations, EC-FAO Food Secur. Program. (2008).

Brady, O. J. et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit. Vectors 7, 338 (2014).

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. Proc. Natl. Acad. Sci. USA 103, 6242–6247 (2006).

Hawley, W. A., Reiter, P., Copeland, R. S., Pumpuni, C. B. & Craig, G. B. Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 236, 1114–1116 (1987).

Hofhuis, A. et al. The hidden passenger of lucky bamboo: do imported Aedes albopictus mosquitoes cause dengue virus transmission in the Netherlands? Vector borne zoonotic Dis 9, 217–220 (2009).

Semenza, J. C. et al. International dispersal of dengue through air travel: importation risk for Europe. PLoS Negl. Trop. Dis. 8, e3278 (2014).

Morens, D. M. & Fauci, A. S. Chikungunya at the door—deja vu all over again? N. Engl. J. Med. 371, 885–887 (2014).

Khan, K. et al. Assessing the origin of and potential for international spread of Chikungunya virus from the Caribbean. PLOS Curr. Outbreaks Jun 6, doi: 10.1371/currents.outbreaks.2134a0a7b"f37fd8d388181539fea2da5 (2014).

Phillips, S. J. et al. Sample selection bias and presence-only distribution model: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

Kraemer, M. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus . eLife. 4, e08347 (2015).

Kraemer, M. U. G. Dryad Digital Repository http://dx.doi.org/10.5061/dryad.47v3c (2015)