Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tính ổn định tiệm cận toàn cầu của mô hình bệnh giả dại với cấu trúc tuổi
Tóm tắt
Trong bài báo này, động học của một bệnh truyền nhiễm được nghiên cứu bằng cách xem xét các mô hình có cấu trúc tuổi; mô hình dịch tễ theo giai đoạn và mô hình dịch tễ theo cấu trúc tuổi. Các số sinh sản cơ bản tương ứng cho các mô hình được đề xuất được tính toán, và các phân tích cục bộ của các điểm cân bằng của các mô hình được điều tra bằng phương pháp tuyến tính hóa. Động học toàn cầu của hai mô hình được phân tích bằng cách sử dụng lemma sóng và lý thuyết hàm Lyapunov. Nghiên cứu này thiết lập một khung lý thuyết vững chắc và một hệ phương trình toán học chặt chẽ cho công tác phòng ngừa và kiểm soát bệnh giả dại.
Từ khóa
#bệnh truyền nhiễm #mô hình dịch tễ #cấu trúc tuổi #số sinh sản cơ bản #tính ổn định tiệm cậnTài liệu tham khảo
Guo JJ (2010) An eco-epidemic system of selective predation. Lanzhou University, Lanzhou
Wang XW (2009) Mathematical modeling and research of infectious disease dynamics. Shanghai University, Shanghai
Sang L (2003) Plague: The Cost of Civilization. Guangdong Economics Publishing House, Guangzhou
Zong YY (2021) Study on diagnosis and control of pseudorabies in pigs. Agric Staff 15:115–116
Song JY (2021) Serosurveillance of five diseases in large-scale sow farms, identification of some pathogens and adjustment of immunization program. Master's degree thesis
Yang JD (2021) Advances in the study of pseudorabies virus infection in different mammals. Pig Breed 6:114–117
Liu JL, Liu BR, Lu P (2021) Dynamic analysis of hand, foot and mouth disease model with age structure. J Xi ’an Polytech Univ 35(03):107–115
Liu WJ, Liu JL (2017) Global stability analysis of Pseudorabies model. J Basic Sci Text Univ 30(2):163–170
Peng X (2021) Diagnosis and control of Pseudorabies in pigs. China Livest Poult Seed Ind 17:145–146
Huai JS, Chen HC (1997) Study on the incubation period of Pseudorabies virus. Prog Vet Med 18(3):17–19
Zhang HZ, Qiu ZX, Li CL et al (2022) Prevention and control of pseudorabies in pigs and purification measures. Guangd Anim Husb Vet Sci Technol 47(01):27–30
Zhu MH (2022) Comprehensive prevention and control of Pseudorabies in pigs. China Livest Poult Breed Ind 21(02):70–72
Huang YX (2021) Epidemiological characteristics, clinical characteristics and prevention and control of swine rabies. Mod Anim Husb Technol 12:79–80
Lisa EP, Ashley ER, Christoph JH (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69(3):462–500
Kermack WO, Mckendrick AG (1927) Contribution to the mathematical theory of epidemics-Part I. Proc R Soc A Lond 115(722):720–721
Van Den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48
Zhang TL, Liu LI, Han MJ (2022) Dynamic analysis of Anthrax model with time delay and seasonality. Acta Math Phys Sin 42(03):851–866
Simon CP, Jacquez JA (1992) Reproduction numbers and the stability of equilibria of SI models for the heterogeneous population. SIAM J Math Anal 52(2):542–576
Wang GX, Zhou ZM, Zhu SM et al (2008) Ordinary differential equation, 3rd edn. Higher Education Press, Beijing
Yu-ming CHEN, Shao-fen ZOU, Jun-yuan YANG (2016) Global analysis of SIR epidemic model with infection age and saturated incidence. Nonlinear Anal Real World Appl 30:16–31
