The geochemical evolution of the continental crust

Reviews of Geophysics - Tập 33 Số 2 - Trang 241-265 - 1995
Stuart Ross Taylor, S. M. McLennan

Tóm tắt

A survey is given of the dimensions and composition of the present continental crust. The abundances of immobile elements in sedimentary rocks are used to establish upper crustal composition. The present upper crustal composition is attributed largely to intracrustal differentiation resulting in the production of granites senso lato. Underplating of the crust by ponded basaltic magmas is probably a major source of heat for intracrustal differentiation. The contrast between the present upper crustal composition and that of the Archean upper crust is emphasized. The nature of the lower crust is examined in the light of evidence from granulites and xenoliths of lower crustal origin. It appears that the protoliths of most granulite facies exposures are more representative of upper or middle crust and that the lower crust has a much more basic composition than the exposed upper crust. There is growing consensus that the crust grows episodically, and it is concluded that at least 60% of the crust was emplaced by the late Archean (ca. 2.7 eons, or 2.7 Ga). There appears to be a relationship between episodes of continental growth and differentiation and supercontinental cycles, probably dating back at least to the late Archean. However, such cycles do not explain the contrast in crustal compositions between Archean and post‐Archean. Mechanisms for deriving the crust from the mantle are considered, including the role of present‐day plate tectonics and subduction zones. It is concluded that a somewhat different tectonic regime operated in the Archean and was responsible for the growth of much of the continental crust. Archean tonalites and trond‐hjemites may have resulted from slab melting and/or from melting of the Archean mantle wedge but at low pressures and high temperatures analogous to modern boninites. In contrast, most andesites and subduction‐related rocks, now the main contributors to crustal growth, are derived ultimately from the mantle wedge above subduction zones. The cause of the contrast between the processes responsible for Archean and post‐Archean crustal growth is attributed to faster subduction of younger, hotter oceanic crust in the Archean (ultimately due to higher heat flow) compared with subduction of older, cooler oceanic crust in more recent times. A brief survey of the causes of continental breakup reveals that neither plume nor lithospheric stretching is a totally satisfactory explanation. Speculations are presented about crustal development before 4000 m.y. ago. The terrestrial continental crust appears to be unique compared with crusts on other planets and satellites in the solar system, ultimately a consequence of the abundant free water on the Earth.

Từ khóa


Tài liệu tham khảo

10.1029/94JB00112

10.1130/0091-7613(1994)022<0039:SOS>2.3.CO;2

10.1016/0040-1951(81)90212-2

10.1029/RG006i002p00175

10.1098/rsta.1981.0122

10.1080/08120099108727995

10.1016/0016-7037(75)90200-8

10.1346/CCMN.1989.0370202

Basaltic Volcanism Study Project, 1981, Basaltic Volcanism on the Terrestrial Planets

Geology and tectonics of Venus Earth Moon Planets 50/51A. T.Basilevsky J. W.Head G. H.Pettengill R. S.Saunders 3–589 1990.

10.1016/0012-821X(89)90079-4

Benz W., 1990, Origin of the Earth, 61, 10.1093/oso/9780195066197.003.0005

10.1016/0019-1035(89)90129-2

10.1016/0012-821X(86)90113-5

10.1086/629658

Boak J. L., 1982, Early crustal evolution: Constraints from variable REE patterns in metasedimentary rocks from the 3800 Ma Isua supracrustal belt, West Greenland (abstract), Lunar Planet. Sci., 13, 51

10.1016/0016-7037(94)90308-5

10.1086/629159

10.1126/science.244.4902.326

10.1144/gsjgs.147.2.0229

Bowring S. A., 1990, Origin of the Earth, 319, 10.1093/oso/9780195066197.003.0018

10.1126/science.232.4749.472

10.1126/science.255.5045.695

10.1016/0009-2541(92)90180-D

10.1086/629605

10.1016/0301-9268(84)90016-0

10.1029/GL010i011p01061

10.1016/0012-821X(88)90151-3

Cloud P., 1988, Oasis in Space

10.1029/RG022i002p00101

10.1016/0009-2541(93)90140-E

Crawford A. J., 1989, Boninites and Related Rocks

10.1016/0016-7037(79)90119-4

10.1130/0091-7613(1992)020<0963:OTEOPT>2.3.CO;2

10.1038/347662a0

10.1130/0091-7613(1993)021<0547:MSHPEO>2.3.CO;2

10.1038/291193a0

10.1029/90JB02219

10.1029/JB095iB13p21503

10.1130/0091-7613(1994)022<0103:OTBACO>2.3.CO;2

10.1130/0091-7613(1988)016<0314:IACCGA>2.3.CO;2

10.1130/0091-7613(1987)15<167:OAEOGI>2.0.CO;2

10.1016/0016-7037(93)90296-9

Evans O. C., 1995, Tectonic Evolution of Greenstone Belts

10.1016/0012-821X(91)90132-2

10.1016/0016-7037(91)90413-Y

10.1016/0016-7037(86)90067-0

Gill J. B., 1995, Turbiditc geochemistry and evolution of the Izu‐Bonin Arc and continents, Lithos

Goldschmidt V. M., 1938, Geochemische verteilungsgesetze der Elemente IX, Skr. Nor. Vidensk. Akad. Kl. 1 Mat. Naturvidensk, Kl., 1

10.1016/0012-821X(88)90031-3

Grieve R. A. F. E. M.Parmentier Considerations of large scale impact and the early EarthLPI Tech. Rep. 85‐01 23–24Lunar and Planet. Inst. Houston Tex. 1985.

10.1038/332695a0

10.1098/rsta.1991.0054

10.1146/annurev.ea.21.050193.001135

10.1016/0024-4937(93)90035-B

10.1126/science.256.5054.186

10.1146/annurev.ea.16.050188.002551

Hoffman P. F., 1992, Encyclopedia of Earth System Science, 323

10.1029/JB093iB01p00338

10.1016/0016-7037(93)90141-I

10.1098/rsta.1981.0117

10.1093/petrology/Special_Volume.1.11

10.1016/0012-821X(92)90110-H

10.1126/science.247.4947.1191

10.1007/BF01829365

10.1016/0016-7037(92)90041-G

10.1016/0016-7037(92)90231-7

10.1016/0009-2541(93)90037-J

10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2

10.1016/0024-4937(93)90046-F

10.1029/GD017p0115

10.1016/0024-4937(93)90038-E

10.1016/0016-7037(94)90203-8

10.1016/0012-821X(91)90029-H

10.1126/science.200.4345.1003

10.1016/0016-7037(94)90516-9

McLennan S. M., 1980, Biogeochemistry of Ancient and Modern Environments, 173

McLennan S. M., 1984, Petrological characteristics of Archean graywackes, J. Sediment. Petrol., 54, 889

10.1007/BF00874553

10.1515/9781501509032-010

McLennan S. M., 1992, Encyclopedia of Earth System Science, 581

10.1016/0016-7037(92)90034-G

10.1086/628690

10.1007/978-3-642-70001-9_3

10.1086/629470

10.1016/0016-7037(79)90202-3

10.1016/0301-9268(83)90060-8

10.1016/0016-7037(84)90345-4

10.1016/0016-7037(90)90269-Q

10.1130/SPE284-p21

10.1016/0016-7037(95)00032-U

Mezger K., 1992, Continental Lower Crust, 447

10.1144/GSL.SP.1991.057.01.10

10.1016/0009-2541(77)90042-0

10.1098/rsta.1978.0024

10.1016/0079-1946(84)90006-5

Mueller P. A., 1982, Precambrian evolution of the Beartooth Mountains, Montana‐Wyoming, USA, Rev. Bras. Geocience., 12, 215

10.1130/0091-7613(1986)14<514:PBCALE>2.0.CO;2

10.1016/0301-9268(83)90061-X

10.1130/0016-7606(1985)96<746:RPOCCT>2.0.CO;2

10.1038/279206a0

Newsom H. E., 1990, Origin of the Earth, 59, 10.1093/oso/9780195066197.001.0001

10.1038/338029a0

10.1029/93JB00521

10.1016/0012-821X(91)90124-Z

10.1016/0012-821X(86)90001-4

10.1016/0012-821X(90)90018-S

10.1016/0012-821X(95)00125-V

Pollack H. N., 1980, Mechanisms of Continental Drift, 183

10.1016/0012-821X(86)90031-2

10.1038/310198a0

Ronov A. B., 1992, General trends in the evolution of the chemical composition of sedimentary and magmatic rocks of the continental Earth crust, Sov. Sci. Rev., Sect. G., Geology, 1, 1

10.1038/347711a0

10.1016/0016-7037(92)90040-P

Rudnick R. L., 1992, Continental Lower Crust, 269

10.1007/978-94-009-2055-2_27

10.1029/JB092iB13p13981

Ryder G., 1990, Lunar samples, lunar accretion, and the early bombardment of the Moon, Eos Trans. AGU, 71, 322

10.1016/0009-2541(86)90129-4

10.1007/978-3-642-76884-2_1

10.1038/316336a0

10.1016/0016-7037(76)90195-2

10.1038/310222a0

10.2475/ajs.288.3.236

10.1016/0009-2541(90)90097-Q

10.1016/0016-7037(90)90400-F

10.1093/petrology/32.1.201

10.1139/e89-145

Storey B. C. T.Alabaste P. J.Pankhurst Magmatism and the causes of continental breakup Geol. Soc. Spec. Publ. London 68 404 1992.

Strom S. E., 1989, The Formation and Evolution of Planetary Systems, 91

10.1016/0012-821X(84)90039-6

10.1016/0040-1951(67)90056-X

10.1029/ME001p0325

Taylor S. R., 1982, Planetary Science: A Lunar Perspective

10.1016/0040-1951(89)90151-0

Taylor S. R., 1992, Solar System Evolution: A New Perspective

Taylor S. R., 1992, Understanding The Earth, 25

10.1016/0024-4937(93)90036-C

Taylor S. R., 1993, Is Venus a twin planet to Earth? New data from Magellan, Mitt. Oesterr. Mineral. Gesell., 138, 33

10.1098/rsta.1981.0119

Taylor S. R., 1985, The Continental Crust: Its Composition and Evolution

Taylor S. R., 1988, Handbook on the Physics and Chemistry of Rare Earths, 485

10.1016/0016-7037(83)90206-5

10.1016/0016-7037(86)90081-5

Tonks W. B., 1990, Origin of the Earth, 151, 10.1093/oso/9780195066197.003.0010

10.1029/GM051p0321

10.1016/0264-3707(92)90011-G

Veizer J., 1983, Trace elements and isotopes in sedimentary carbonates, Rev. Mineral., 11, 265

10.1086/628992

Vilas F., 1988, Mercury

10.1038/347731a0

10.1016/0016-7037(89)90240-8

10.1098/rsta.1976.0016

10.1007/BF01829361

10.1016/0012-821X(93)90043-9

Wetherill G. W., 1986, Origin of the Moon, 519

White R. S., 1992, Magmatism and the Causes of Continental Breakup, 1

10.1007/978-94-009-0895-6_5

10.1007/978-3-662-01141-6_4

Wyllie P. J., 1983, Migmatites and Metamorphism, 37

Young G. M., 1991, The geologic record of glaciation: Relevance to the climatic history of Earth, Geosci. Can., 18, 100

10.1029/93JB00193