The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus

Nature Reviews Endocrinology - Tập 13 Số 9 - Trang 521-535 - 2017
Konstantina Chachlaki1, John Garthwaite2, Vincent Prévot1
1Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, UMR-S 1172, 1 place de Verdun, Lille, F-59000, France
2The Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arnold, W. P., Mittal, C. K., Katsuki, S. & Murad, F. Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc. Natl Acad. Sci. USA 74, 3203–3207 (1977).

Miki, N., Kawabe, Y. & Kuriyama, K. Activation of cerebral guanylate cyclase by nitric oxide. Biochem. Biophys. Res. Commun. 75, 851–856 (1977).

Garthwaite, J., Charles, S. L. & Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385–388 (1988).

Bredt, D. S. et al. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7, 615–624 (1991).

Bredt, D. S. & Snyder, S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl Acad. Sci. USA 87, 682–685 (1990).

Giuili, G., Luzi, A., Poyard, M. & Guellaen, G. Expression of mouse brain soluble guanylyl cyclase and NO synthase during ontogeny. Brain Res. Dev. Brain Res. 81, 269–283 (1994).

Schmidt, H. H. et al. Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase, and novel paraneural functions for nitrinergic signal transduction. J. Histochem. Cytochem. 40, 1439–1456 (1992).

Southam, E. & Garthwaite, J. The nitric oxide–cyclic GMP signalling pathway in rat brain. Neuropharmacology 32, 1267–1277 (1993).

Vincent, S. R. & Kimura, H. Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46, 755–784 (1992).

De Vente, J. et al. Distribution of nitric oxide synthase and nitric oxide-receptive, cyclic GMP-producing structures in the rat brain. Neuroscience 87, 207–241 (1998).

Newton, D. C. et al. Translational regulation of human neuronal nitric-oxide synthase by an alternatively spliced 5′-untranslated region leader exon. J. Biol. Chem. 278, 636–644 (2003).

Wang, Y. et al. RNA diversity has profound effects on the translation of neuronal nitric oxide synthase. Proc. Natl Acad. Sci. USA 96, 12150–12155 (1999).

Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell 84, 757–767 (1996).

Tochio, H., Zhang, Q., Mandal, P., Li, M. & Zhang, M. Solution structure of the extended neuronal nitric oxide synthase PDZ domain complexed with an associated peptide. Nat. Struct. Biol. 6, 417–421 (1999).

Adak, S. et al. Neuronal nitric-oxide synthase mutant (Ser-1412 → Asp) demonstrates surprising connections between heme reduction, NO complex formation, and catalysis. J. Biol. Chem. 276, 1244–1252 (2001).

Rameau, G. A. et al. Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J. Neurosci. 27, 3445–3455 (2007).

Hayashi, Y. et al. Regulation of neuronal nitric-oxide synthase by calmodulin kinases. J. Biol. Chem. 274, 20597–20602 (1999).

Komeima, K., Hayashi, Y., Naito, Y. & Watanabe, Y. Inhibition of neuronal nitric-oxide synthase by calcium/calmodulin-dependent protein kinase IIα through Ser847 phosphorylation in NG108-15 neuronal cells. J. Biol. Chem. 275, 28139–28143 (2000).

Rameau, G. A., Chiu, L. Y. & Ziff, E. B. Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor. J. Biol. Chem. 279, 14307–14314 (2004).

Garthwaite, J. Concepts of neural nitric oxide-mediated transmission. Eur. J. Neurosci. 27, 2783–2802 (2008).

Eliasson, M. J., Blackshaw, S., Schell, M. J. & Snyder, S. H. Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proc. Natl Acad. Sci. USA 94, 3396–3401 (1997).

Putzke, J., Seidel, B., Huang, P. L. & Wolf, G. Differential expression of alternatively spliced isoforms of neuronal nitric oxide synthase (nNOS) and N-methyl-D-aspartate receptors (NMDAR) in knockout mice deficient in nNOS α (nNOS α(δ/δ) mice). Brain Res. Mol. Brain Res. 85, 13–23 (2000).

Brenman, J. E., Xia, H., Chao, D. S., Black, S. M. & Bredt, D. S. Regulation of neuronal nitric oxide synthase through alternative transcripts. Dev. Neurosci. 19, 224–231 (1997).

Catania, M. V., Aronica, E., Yankaya, B. & Troost, D. Increased expression of neuronal nitric oxide synthase spliced variants in reactive astrocytes of amyotrophic lateral sclerosis human spinal cord. J. Neurosci. 21, RC148 (2001).

Ward, M. E. et al. Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. J. Clin. Invest. 115, 3128–3139 (2005).

Daniel, H., Levenes, C. & Crepel, F. Cellular mechanisms of cerebellar LTD. Trends Neurosci. 21, 401–407 (1998).

Toda, N. & Okamura, T. The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol. Rev. 55, 271–324 (2003).

Garthwaite, J. From synaptically localized to volume transmission by nitric oxide. J. Physiol. 594, 9–18 (2016).

Ignarro, L. J., Ross, G. & Tillisch, J. Pharmacology of endothelium-derived nitric oxide and nitrovasodilators. West. J. Med. 154, 51–62 (1991).

Baltrons, M. A. & Garcia, A. Nitric oxide-independent down-regulation of soluble guanylyl cyclase by bacterial endotoxin in astroglial cells. J. Neurochem. 73, 2149–2157 (1999).

Baltrons, M. A., Boran, M. S., Pifarre, P. & Garcia, A. Regulation and function of cyclic GMP-mediated pathways in glial cells. Neurochem. Res. 33, 2427–2435 (2008).

Tanaka, J., Markerink-van Ittersum, M., Steinbusch, H. W. & De Vente, J. Nitric oxide-mediated cGMP synthesis in oligodendrocytes in the developing rat brain. Glia 19, 286–297 (1997).

Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S. H. & Fishman, M. C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75, 1273–1286 (1993).

Spicer, R. D. Infantile hypertrophic pyloric stenosis: a review. Br. J. Surg. 69, 128–135 (1982).

Gyurko, R., Leupen, S. & Huang, P. L. Deletion of exon 6 of the neuronal nitric oxide synthase gene in mice results in hypogonadism and infertility. Endocrinology 143, 2767–2774 (2002).

Boehm, U. et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism — pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 11, 547–564 (2015).

Prevot, V. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 1395–1439 (Elsevier, 2015).

Simerly, R. B. Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu. Rev. Neurosci. 25, 507–536 (2002).

Tobet, S. et al. Brain sex differences and hormone influences: a moving experience? J. Neuroendocrinol. 21, 387–392 (2009).

Israel, J. M., Cabelguen, J. M., Le Masson, G., Oliet, S. H. & Ciofi, P. Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction. Nat. Commun. 5, 3285 (2014).

Hatton, G. I. Function-related plasticity in hypothalamus. Annu. Rev. Neurosci. 20, 375–397 (1997).

Theodosis, D. T., Poulain, D. A. & Oliet, S. H. Activity-dependent structural and functional plasticity of astrocyte–neuron interactions. Physiol. Rev. 88, 983–1008 (2008).

Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008).

Giacobini, P. et al. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A. PLoS Biol. 12, e1001808 (2014).

Prevot, V. et al. Function-related structural plasticity of the GnRH system: a role for neuronal–glial–endothelial interactions. Front. Neuroendocrinol. 31, 241–258 (2010).

Parkash, J. et al. Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat. Commun. 6, 6385 (2015).

Grattan, D. R. 60 years of neuroendocrinology: the hypothalamo–prolactin axis. J. Endocrinol. 226, T101–T122 (2015).

Bains, J. S., Wamsteeker Cusulin, J. I. & Inoue, W. Stress-related synaptic plasticity in the hypothalamus. Nat. Rev. Neurosci. 16, 377–388 (2015).

Calabrese, V. et al. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8, 766–775 (2007).

Branco, L. G., Soriano, R. N. & Steiner, A. A. Gaseous mediators in temperature regulation. Compr. Physiol. 4, 1301–1338 (2014).

Rivier, C. Role of hypothalamic corticotropin-releasing factor in mediating alcohol-induced activation of the rat hypothalamic–pituitary–adrenal axis. Front. Neuroendocrinol. 35, 221–233 (2014).

Routh, V. H., Hao, L., Santiago, A. M., Sheng, Z. & Zhou, C. Hypothalamic glucose sensing: making ends meet. Front. Syst. Neurosci. 8, 236 (2014).

Bellefontaine, N. et al. Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction. Neuroendocrinology 93, 74–89 (2011).

Srisawat, R. et al. Nitric oxide and the oxytocin system in pregnancy. J. Neurosci. 20, 6721–6727 (2000).

Donato, J. Jr, Frazao, R., Fukuda, M., Vianna, C. R. & Elias, C. F. Leptin induces phosphorylation of neuronal nitric oxide synthase in defined hypothalamic neurons. Endocrinology 151, 5415–5427 (2010).

Zimmerman, C. A. et al. Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature 537, 680–684 (2016).

Oka, Y., Ye, M. & Zuker, C. S. Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature 520, 349–352 (2015).

Sutton, A. K. et al. Control of food intake and energy expenditure by Nos1 neurons of the paraventricular hypothalamus. J. Neurosci. 34, 15306–15318 (2014).

Sutton, A. K., Myers, M. G. Jr & Olson, D. P. The role of PVH circuits in leptin action and energy balance. Annu. Rev. Physiol. 78, 207–221 (2016).

Gonzalez-Flores, O. & Etgen, A. M. The nitric oxide pathway participates in estrous behavior induced by progesterone and some of its ring A-reduced metabolites. Horm. Behav. 45, 50–57 (2004).

Herbison, A. E. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 399–468 (Elsevier, 2015).

Christian, C. A. & Moenter, S. M. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr. Rev. 31, 544–577 (2010).

Tena-Sempere, M. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 1605–1636 (Elsevier, 2015).

Hazlerigg, D. & Simonneaux, V. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 1575–1604 (Elsevier, 2015).

Bellefontaine, N. & Elias, C. F. Minireview: metabolic control of the reproductive physiology: insights from genetic mouse models. Horm. Behav. 66, 7–14 (2014).

Evans, J. J. & Anderson, G. M. Balancing ovulation and anovulation: integration of the reproductive and energy balance axes by neuropeptides. Hum. Reprod. Update 18, 313–332 (2012).

de Roux, N. et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl Acad. Sci. USA 100, 10972–10976 (2003).

Seminara, S. B. et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003).

d'Anglemont de Tassigny, X. et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc. Natl Acad. Sci. USA 104, 10714–10719 (2007).

Topaloglu, A. K. et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N. Engl. J. Med. 366, 629–635 (2012).

Kirilov, M. et al. Dependence of fertility on kisspeptin–Gpr54 signaling at the GnRH neuron. Nat. Commun. 4, 2492 (2013).

Yoon, H., Enquist, L. W. & Dulac, C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123, 669–682 (2005).

Boehm, U., Zou, Z. & Buck, L. B. Feedback loops link odor and pheromone signaling with reproduction. Cell 123, 683–695 (2005).

Wintermantel, T. M. et al. Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron 52, 271–280 (2006).

Agnati, L. F., Zoli, M., Stromberg, I. & Fuxe, K. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69, 711–726 (1995).

Gundersen, V., Storm-Mathisen, J. & Bergersen, L. H. Neuroglial transmission. Physiol. Rev. 95, 695–726 (2015).

Bonavera, J. J., Sahu, A., Kalra, P. S. & Kalra, S. P. Evidence in support of nitric oxide (NO) involvement in the cyclic release of prolactin and LH surges. Brain Res. 660, 175–179 (1994).

Moretto, M., Lopez, F. J. & Negro-Vilar, A. Nitric oxide regulates luteinizing hormone-releasing hormone secretion. Endocrinology 133, 2399–2402 (1993).

Rettori, V. et al. Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc. Natl Acad. Sci. USA 90, 10130–10134 (1993).

Aguan, K., Mahesh, V. B., Ping, L., Bhat, G. & Brann, D. W. Evidence for a physiological role for nitric oxide in the regulation of the LH surge: effect of central administration of antisense oligonucleotides to nitric oxide synthase. Neuroendocrinology 64, 449–455 (1996).

d'Anglemont de Tassigny, X. et al. Coupling of neuronal nitric oxide synthase to NMDA receptors via postsynaptic density-95 depends on estrogen and contributes to the central control of adult female reproduction. J. Neurosci. 27, 6103–6114 (2007).

Clasadonte, J., Poulain, P., Beauvillain, J. C. & Prevot, V. Activation of neuronal nitric oxide release inhibits spontaneous firing in adult gonadotropin-releasing hormone neurons: a possible local synchronizing signal. Endocrinology 149, 587–596 (2008).

Herbison, A. E., Simonian, S. X., Norris, P. J. & Emson, P. C. Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J. Neuroendocrinol. 8, 73–82 (1996).

Hanchate, N. K. et al. Kisspeptin–GPR54 signaling in mouse NO-synthesizing neurons participates in the hypothalamic control of ovulation. J. Neurosci. 32, 932–945 (2012).

Herde, M. K., Geist, K., Campbell, R. E. & Herbison, A. E. Gonadotropin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood–brain barrier. Endocrinology 152, 3832–3841 (2011).

Maggi, A., Ciana, P., Belcredito, S. & Vegeto, E. Estrogens in the nervous system: mechanisms and nonreproductive functions. Annu. Rev. Physiol. 66, 291–313 (2004).

Simerly, R. B. Wired on hormones: endocrine regulation of hypothalamic development. Curr. Opin. Neurobiol. 15, 81–85 (2005).

Hara, Y., Waters, E. M., McEwen, B. S. & Morrison, J. H. Estrogen effects on cognitive and synaptic health over the lifecourse. Physiol. Rev. 95, 785–807 (2015).

Nugent, B. M. et al. Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci. 18, 690–697 (2015).

Chachlaki, K. & Prevot, V. Coexpression profiles reveal hidden gene networks. Proc. Natl Acad. Sci. USA 113, 2563–2565 (2016).

Mahfouz, A. et al. Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions. Proc. Natl Acad. Sci. USA 113, 2738–2743 (2016).

Sarkar, D. K. & Fink, G. Luteinizing hormone releasing factor in pituitary stalk plasma from long-term ovariectomized rats: effects of steroids. J. Endocrinol. 86, 511–524 (1980).

Akama, K. T. & McEwen, B. S. Estrogen stimulates postsynaptic density-95 rapid protein synthesis via the Akt/protein kinase B pathway. J. Neurosci. 23, 2333–2339 (2003).

Weiner, C. P. et al. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc. Natl Acad. Sci. USA 91, 5212–5216 (1994).

Woolley, C. S. & McEwen, B. S. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. 12, 2549–2554 (1992).

Sato, S., Braham, C. S., Putnam, S. K. & Hull, E. M. Neuronal nitric oxide synthase and gonadal steroid interaction in the MPOA of male rats: co-localization and testosterone-induced restoration of copulation and nNOS-immunoreactivity. Brain Res. 1043, 205–213 (2005).

Scordalakes, E. M., Shetty, S. J. & Rissman, E. F. Roles of estrogen receptor α and androgen receptor in the regulation of neuronal nitric oxide synthase. J. Comp. Neurol. 453, 336–344 (2002).

Chachlaki, K. et al. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus. J. Comp. Neurol. http://dx.doi.org/10.1002/cne.24257 (2017).

Levine, J. E. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 399–468 (Elsevier, 2015).

d'Anglemont de Tassigny, X., Campagne, C., Steculorum, S. & Prevot, V. Estradiol induces physical association of neuronal nitric oxide synthase with NMDA receptor and promotes nitric oxide formation via estrogen receptor activation in primary neuronal cultures. J. Neurochem. 109, 214–224 (2009).

Parkash, J. et al. Phosphorylation of N-methyl-D-aspartic acid receptor-associated neuronal nitric oxide synthase depends on estrogens and modulates hypothalamic nitric oxide production during the ovarian cycle. Endocrinology 151, 2723–2735 (2010).

Urbanski, H. F. & Ojeda, S. R. A role for N-methyl-D-aspartate (NMDA) receptors in the control of LH secretion and initiation of female puberty. Endocrinology 126, 1774–1776 (1990).

d'Anglemont de Tassigny, X., Ackroyd, K. J., Chatzidaki, E. E. & Colledge, W. H. Kisspeptin signaling is required for peripheral but not central stimulation of gonadotropin-releasing hormone neurons by NMDA. J. Neurosci. 30, 8581–8590 (2010).

Bhat, G. K. et al. Histochemical localization of nitric oxide neurons in the hypothalamus: association with gonadotropin-releasing hormone neurons and co-localization with N-methyl-D-aspartate receptors. Neuroendocrinology 62, 187–197 (1995).

Chakraborty, T. R., Ng, L. & Gore, A. C. Colocalization and hormone regulation of estrogen receptor α and N-methyl-D-aspartate receptor in the hypothalamus of female rats. Endocrinology 144, 299–305 (2003).

Brann, D. W. & Mahesh, V. B. Endogenous excitatory amino acid involvement in the preovulatory and steroid-induced surge of gonadotropins in the female rat. Endocrinology 128, 1541–1547 (1991).

Cheong, R. Y., Czieselsky, K., Porteous, R. & Herbison, A. E. Expression of ESR1 in glutamatergic and GABAergic neurons is essential for normal puberty onset, estrogen feedback, and fertility in female mice. J. Neurosci. 35, 14533–14543 (2015).

Herde, M. K., Iremonger, K. J., Constantin, S. & Herbison, A. E. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J. Neurosci. 33, 12689–12697 (2013).

Marshall, C. J., Desroziers, E., McLennan, T. & Campbell, R. E. Defining subpopulations of arcuate nucleus GABA neurons in male, female and prenatally androgenized female mice. Neuroendocrinology http://dx.doi.org/10.1159/000452105 (2016).

Cattanach, B. M., Iddon, C. A., Charlton, H. M., Chiappa, S. A. & Fink, G. Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 269, 338–340 (1977).

Mason, A. J. et al. A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science 234, 1366–1371 (1986).

Berghard, A., Hagglund, A. C., Bohm, S. & Carlsson, L. Lhx2-dependent specification of olfactory sensory neurons is required for successful integration of olfactory, vomeronasal, and GnRH neurons. FASEB J. 26, 3464–3472 (2012).

Pinilla, L., Aguilar, E., Dieguez, C., Millar, R. P. & Tena-Sempere, M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol. Rev. 92, 1235–1316 (2012).

Oakley, A. E., Clifton, D. K. & Steiner, R. A. Kisspeptin signaling in the brain. Endocr. Rev. 30, 713–743 (2009).

Ciofi, P., Leroy, D. & Tramu, G. Sexual dimorphism in the organization of the rat hypothalamic infundibular area. Neuroscience 141, 1731–1745 (2006).

Caron, E., Ciofi, P., Prevot, V. & Bouret, S. G. Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. J. Neurosci. 32, 11486–11494 (2012).

Clarkson, J. & Herbison, A. E. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147, 5817–5825 (2006).

Yip, S. H., Boehm, U., Herbison, A. E. & Campbell, R. E. Conditional viral tract tracing delineates the projections of the distinct kisspeptin neuron populations to gonadotropin-releasing hormone (GnRH) neurons in the mouse. Endocrinology 156, 2582–2594 (2015).

Liu, X. et al. Frequency-dependent recruitment of fast amino acid and slow neuropeptide neurotransmitter release controls gonadotropin-releasing hormone neuron excitability. J. Neurosci. 31, 2421–2430 (2011).

Qiu, J. et al. High frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons. eLife 5, e16246 (2016).

Herbison, A. E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 12, 452–466 (2016).

Han, S. Y., McLennan, T., Czieselsky, K. & Herbison, A. E. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion. Proc. Natl Acad. Sci. USA 112, 13109–13114 (2015).

Campos, P. & Herbison, A. E. Optogenetic activation of GnRH neurons reveals minimal requirements for pulsatile luteinizing hormone secretion. Proc. Natl Acad. Sci. USA 111, 18387–18392 (2014).

Clarke, S. A. & Dhillo, W. S. Kisspeptin across the human lifespan:evidence from animal studies and beyond. J. Endocrinol. 229, R83–R98 (2016).

Han, S. K. et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J. Neurosci. 25, 11349–11356 (2005).

Decourt, C. et al. A synthetic kisspeptin analog that triggers ovulation and advances puberty. Sci. Rep. 6, 26908 (2016).

Leon, S. et al. Direct actions of kisspeptins on GnRH neurons permit attainment of fertility but are insufficient to fully preserve gonadotropic axis activity. Sci. Rep. 6, 19206 (2016).

Herbison, A. E., de Tassigny, X., Doran, J. & Colledge, W. H. Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons. Endocrinology 151, 312–321 (2010).

Pielecka-Fortuna, J., Chu, Z. & Moenter, S. M. Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology 149, 1979–1986 (2008).

Kuiri-Hanninen, T., Sankilampi, U. & Dunkel, L. Activation of the hypothalamic–pituitary–gonadal axis in infancy: minipuberty. Horm. Res. Paediatr. 82, 73–80 (2014).

Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016).

Bouret, S. G., Draper, S. J. & Simerly, R. B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 24, 2797–2805 (2004).

Belsham, D. D. & Mellon, P. L. Transcription factors Oct-1 and C/EBPβ (CCAAT/enhancer-binding protein-β) are involved in the glutamate/nitric oxide/cyclic-guanosine 5′-monophosphate-mediated repression of mediated repression of gonadotropin-releasing hormone gene expression. Mol. Endocrinol. 14, 212–228 (2000).

Glanowska, K. M., Burger, L. L. & Moenter, S. M. Development of gonadotropin-releasing hormone secretion and pituitary response. J. Neurosci. 34, 15060–15069 (2014).

Choe, H. K. et al. Real-time GnRH gene transcription in GnRH promoter-driven luciferase-expressing transgenic mice: effect of kisspeptin. Neuroendocrinology 102, 194–199 (2015).

Kennedy, G. C. Interactions between feeding behavior and hormones during growth. Ann. NY Acad. Sci. 157, 1049–1061 (1969).

Biro, F. M., Khoury, P. & Morrison, J. A. Influence of obesity on timing of puberty. Int. J. Androl. 29, 272–277 (2006).

Friedman, C. I. & Kim, M. H. Obesity and its effect on reproductive function. Clin. Obstet. Gynecol. 28, 645–663 (1985).

Chehab, F. F. 20 years of leptin: leptin and reproduction: past milestones, present undertakings, and future endeavors. J. Endocrinol. 223, T37–T48 (2014).

Munzberg, H. & Morrison, C. D. Structure, production and signaling of leptin. Metabolism 64, 13–23 (2015).

Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

Chehab, F. F., Lim, M. E. & Lu, R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat. Genet. 12, 318–320 (1996).

Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

Quennell, J. H. et al. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology 150, 2805–2812 (2009).

Sullivan, S. D., DeFazio, R. A. & Moenter, S. M. Metabolic regulation of fertility through presynaptic and postsynaptic signaling to gonadotropin-releasing hormone neurons. J. Neurosci. 23, 8578–8585 (2003).

Louis, G. W. et al. Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 152, 2302–2310 (2011).

Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

Welt, C. K. et al. Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med. 351, 987–997 (2004).

Nagatani, S. et al. Evidence for GnRH regulation by leptin: leptin administration prevents reduced pulsatile LH secretion during fasting. Neuroendocrinology 67, 370–376 (1998).

Bellefontaine, N. et al. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. J. Clin. Invest. 124, 2550–2559 (2014).

Leshan, R. L. et al. Direct innervation of GnRH neurons by metabolic- and sexual odorant-sensing leptin receptor neurons in the hypothalamic ventral premammillary nucleus. J. Neurosci. 29, 3138–3147 (2009).

Langlet, F., Mullier, A., Bouret, S. G., Prevot, V. & Dehouck, B. Tanycyte-like cells form a blood–cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J. Comp. Neurol. 521, 3389–3405 (2013).

Prager-Khoutorsky, M. & Bourque, C. W. Anatomical organization of the rat organum vasculosum laminae terminalis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R324–R337 (2015).

Leshan, R. L., Greenwald-Yarnell, M., Patterson, C. M., Gonzalez, I. E. & Myers, M. G. Jr. Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance. Nat. Med. 18, 820–823 (2012).

Zhang, Y. et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci. 31, 1873–1884 (2011).

Yu, S. et al. Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis. J. Neurosci. 36, 5034–5046 (2016).

Martin, C. et al. Leptin-responsive GABAergic neurons regulate fertility through pathways that result in reduced kisspeptinergic tone. J. Neurosci. 34, 6047–6056 (2014).

Zuure, W. A., Roberts, A. L., Quennell, J. H. & Anderson, G. M. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function. J. Neurosci. 33, 17874–17883 (2013).

Donato, J. Jr et al. Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J. Clin. Invest. 121, 355–368 (2011).

Ratra, D. V. & Elias, C. F. Chemical identity of hypothalamic neurons engaged by leptin in reproductive control. J. Chem. Neuroanat. 61–62, 233–238 (2014).

Lancaster, J. R. Jr. A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1, 18–30 (1997).

Moller, M. et al. Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein. J. Biol. Chem. 280, 8850–8854 (2005).

Agnati, L. F., Guidolin, D., Guescini, M., Genedani, S. & Fuxe, K. Understanding wiring and volume transmission. Brain Res. Rev. 64, 137–159 (2010).

Wood, J. & Garthwaite, J. Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology 33, 1235–1244 (1994).

Wood, K. C. et al. Picomolar nitric oxide signals from central neurons recorded using ultrasensitive detector cells. J. Biol. Chem. 286, 43172–43181 (2011).

Bhargava, Y. et al. Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging. Front. Mol. Neurosci. 6, 26 (2013).

Hall, C. N. & Garthwaite, J. Inactivation of nitric oxide by rat cerebellar slices. J. Physiol. 577, 549–567 (2006).

Sweeney, Y., Hellgren Kotaleski, J. & Hennig, M. H. A. Diffusive homeostatic signal maintains neural heterogeneity and responsiveness in cortical networks. PLoS Comput. Biol. 11, e1004389 (2015).

Sweeney, Y. & Clopath, C. Emergent spatial synaptic structure from diffusive plasticity. Eur. J. Neurosci. 45, 1057–1067 (2016).

Israel, J. M., Oliet, S. H. & Ciofi, P. Electrophysiology of hypothalamic magnocellular neurons in vitro: a rhythmic drive in organotypic cultures and acute slices. Front. Neurosci. 10, 109 (2016).

Marder, E., O'Leary, T. & Shruti, S. Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu. Rev. Neurosci. 37, 329–346 (2014).

Steculorum, S. M. et al. Neonatal ghrelin programs development of hypothalamic feeding circuits. J. Clin. Invest. 125, 846–858 (2015).

Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

Bakker, J. & Baum, M. J. Role for estradiol in female-typical brain and behavioral sexual differentiation. Front. Neuroendocrinol. 29, 1–16 (2008).

World Health Organization. Global status report on noncommunicable diseases 2010. WHO http://apps.who.int/iris/bitstream/10665/44579/1/9789240686458_eng.pdf (2011).

Witchel, S. F. Disorders of puberty: take a good history! J. Clin. Endocrinol. Metab. 101, 2643–2646 (2016).

Patton, G. C. & Viner, R. Pubertal transitions in health. Lancet 369, 1130–1139 (2007).

Hoyt, L. T. & Falconi, A. M. Puberty and perimenopause: reproductive transitions and their implications for women's health. Soc. Sci. Med. 132, 103–112 (2015).

Cohen, R. Z., Seeman, M. V., Gotowiec, A. & Kopala, L. Earlier puberty as a predictor of later onset of schizophrenia in women. Am. J. Psychiatry 156, 1059–1064 (1999).

O'Donovan, M. C. et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat. Genet. 40, 1053–1055 (2008).

Freudenberg, F., Alttoa, A. & Reif, A. Neuronal nitric oxide synthase (NOS1) and its adaptor, NOS1AP, as genetic risk factors for psychiatric disorders. Genes Brain Behav. 14, 46–63 (2015).

Hallak, J. E. et al. Rapid improvement of acute schizophrenia symptoms after intravenous sodium nitroprusside: a randomized, double-blind, placebo-controlled trial. JAMA Psychiatry. 70, 668–676 (2013).

Shim, S., Shuman, M. & Duncan, E. An emerging role of cGMP in the treatment of schizophrenia: a review. Schizophr. Res. 170, 226–231 (2016).

Charriaut-Marlangue, C. et al. Nitric oxide signaling in the brain: a new target for inhaled nitric oxide? Ann. Neurol. 73, 442–448 (2013).

Bhatraju, P., Crawford, J., Hall, M. & Lang, J. D. Jr. Inhaled nitric oxide: current clinical concepts. Nitric Oxide 50, 114–128 (2015).

Ambalavanan, N. & Aschner, J. L. Management of hypoxemic respiratory failure and pulmonary hypertension in preterm infants. J. Perinatol. 36 (Suppl. 2) S20–S27 (2016).

Charriaut-Marlangue, C. et al. Inhaled nitric oxide reduces brain damage by collateral recruitment in a neonatal stroke model. Stroke 43, 3078–3084 (2012).

Pham, H. et al. Inhaled NO protects cerebral white matter in neonatal rats with combined brain and lung injury. Am. J. Respir. Crit. Care Med. 185, 897–899 (2012).

Kuiri-Hanninen, T. et al. Increased activity of the hypothalamic–pituitary–testicular axis in infancy results in increased androgen action in premature boys. J. Clin. Endocrinol. Metab. 96, 98–105 (2011).

Kuiri-Hanninen, T. et al. Postnatal developmental changes in the pituitary–ovarian axis in preterm and term infant girls. J. Clin. Endocrinol. Metab. 96, 3432–3439 (2011).

Back, S. A. Brain injury in the preterm infant: new horizons for pathogenesis and prevention. Pediatr. Neurol. 53, 185–192 (2015).

Swamy, G. K., Ostbye, T. & Skjaerven, R. Association of preterm birth with long-term survival, reproduction, and next-generation preterm birth. JAMA 299, 1429–1436 (2008).

Zhong, L. R., Estes, S., Artinian, L. & Rehder, V. Cell-specific regulation of neuronal activity by endogenous production of nitric oxide. Eur. J. Neurosci. 41, 1013–1024 (2015).

Batchelor, A. M. et al. Exquisite sensitivity to subsecond, picomolar nitric oxide transients conferred on cells by guanylyl cyclase-coupled receptors. Proc. Natl Acad. Sci. USA 107, 22060–22065 (2010).

Garthwaite, J. New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol. Cell. Biochem. 334, 221–232 (2010).

Gally, J. A., Montague, P. R., Reeke, G. N. Jr & Edelman, G. M. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc. Natl Acad. Sci. USA 87, 3547–3551 (1990).

Montague, P. R. & Sejnowski, T. J. The predictive brain: temporal coincidence and temporal order in synaptic learning mechanisms. Learn. Mem. 1, 1–33 (1994).

Patton, G. C. et al. Our future: a Lancet commission on adolescent health and wellbeing. Lancet 387, 2423–2478 (2016).

Raivio, T. et al. Reversal of idiopathic hypogonadotropic hypogonadism. N. Engl. J. Med. 357, 863–873 (2007).

Sidhoum, V. F. et al. Reversal and relapse of hypogonadotropic hypogonadism: resilience and fragility of the reproductive neuroendocrine system. J. Clin. Endocrinol. Metab. 99, 861–870 (2014).