The genomic physics of tumor–microenvironment crosstalk
Tài liệu tham khảo
Rodriguez-Meira, 2019, Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing, Mol. Cell., 73, 1292, 10.1016/j.molcel.2019.01.009
Lawson, 2018, Tumour heterogeneity and metastasis at single-cell resolution, Nat. Cell Biol., 20, 1349, 10.1038/s41556-018-0236-7
Losic, 2020, Intratumoral heterogeneity and clonal evolution in liver cancer, Nature Commun., 11, 291, 10.1038/s41467-019-14050-z
Wagner, 2019, A single-cell atlas of the tumor and immune ecosystem of human breast cancer, Cell, 177, 1330, 10.1016/j.cell.2019.03.005
Grzywa, 2017, Intratumor and intertumor heterogeneity in melanoma, Transl. Oncol., 10, 956, 10.1016/j.tranon.2017.09.007
Gueguen, 2021, Contribution of resident and circulating precursors to tumor-infiltrating CD8+ T cell populations in lung cancer, Sci. Immunol., 6, 10.1126/sciimmunol.abd5778
Venkataramani, 2022, Glioblastoma hijacks neuronal mechanisms for brain invasion, Cell, 185, 2899, 10.1016/j.cell.2022.06.054
Román-Pérez, 2012, Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients, Breast Cancer Res. Tr., 14, 1
Saburi, 2022, Spatially resolved immune microenvironmental profiling for follicular thyroid carcinoma with minimal capsular invasion, Mod. Pathol., 35, 721, 10.1038/s41379-021-00993-6
Jacob, 2020, A patient-derived glioblastoma organoid model and biobank recapitulates inter-and intra-tumoral heterogeneity, Cell, 180, 188, 10.1016/j.cell.2019.11.036
Chang, 2019, Evaluation of tumor cell–tumor microenvironment component interactions as potential predictors of patient response to NapabucasinTumor cell–TME interactions and the response to napabucasin, Mol. Cancer Res., 17, 1429, 10.1158/1541-7786.MCR-18-1242
Liu, 2018, The significance of intertumor and intratumor heterogeneity in liver cancer, Exp. Mol. Med., 50, 10.1038/emm.2017.165
Dzobo, 2018, Not everyone fits the mold: intratumor and intertumor heterogeneity and innovative cancer drug design and development, Omics, 22, 17, 10.1089/omi.2017.0174
Venkatesan, 2016, Tumor evolutionary principles: how intratumor heterogeneity influences cancer treatment and outcome, e141
Galon, 2020, Tumor immunology and tumor evolution: intertwined histories, Immunity, 52, 55, 10.1016/j.immuni.2019.12.018
Ramón y Cajal, 2020, Clinical implications of intratumor heterogeneity: challenges and opportunities, J. Mol. Med., 98, 161, 10.1007/s00109-020-01874-2
El-Deiry, 2017, Tumor evolution, heterogeneity, and therapy for our patients with advanced cancer: how far have we come?, e8
De Lartigue, 2018, Tumor heterogeneity: a central foe in the war on cancer, J. Commun. Support. Oncol., 16, E167
Witz, 2008, Tumor–microenvironment interactions: Dangerous liaisons, Adv. Cancer Res., 100, 203, 10.1016/S0065-230X(08)00007-9
Najafi, 2019, Tumor microenvironment: Interactions and therapy, J. Cell. Physiol., 234, 5700, 10.1002/jcp.27425
De Looff, 2019, Multiple interactions between cancer cells and the tumor microenvironment modulate TRAIL signaling: implications for TRAIL receptor targeted therapy, Front. Immunol., 10, 1530, 10.3389/fimmu.2019.01530
Lim, 2018, Inflammatory breast cancer biology: the tumour microenvironment is key, Nat. Rev. Cancer, 18, 485, 10.1038/s41568-018-0010-y
Jin, 2020, The updated landscape of tumor microenvironment and drug repurposing, Signal Transduct. Targeted Therapy, 5, 166, 10.1038/s41392-020-00280-x
Anderson, 2020, The tumor microenvironment, Curr. Biol., 30, R921, 10.1016/j.cub.2020.06.081
Zhang, 2021, CellCall: integrating paired ligand–receptor and transcription factor activities for cell–cell communication, Nucl. Acids Res., 49, 8520, 10.1093/nar/gkab638
Armingol, 2021, Deciphering cell–cell interactions and communication from gene expression, Nat. Rev. Genet., 22, 71, 10.1038/s41576-020-00292-x
Almet, 2021, The landscape of cell–cell communication through single-cell transcriptomics, Curr. Opin. Syst. Biol., 26, 12, 10.1016/j.coisb.2021.03.007
Canozo, 2022, Cell-type modeling in spatial transcriptomics data elucidates spatially variable colocalization and communication between cell-types in mouse brain, Cell Syst., 13, 58, 10.1016/j.cels.2021.09.004
Efremova, 2020, CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes, Nat. protoc., 15, 1484, 10.1038/s41596-020-0292-x
Yang, 2022, Expression analysis of ligand-receptor pairs identifies cell-to-cell crosstalk between macrophages and tumor cells in lung adenocarcinoma, J. Immunol. Res., 2022, 10.1155/2022/9589895
Nowell, 1976, The clonal evolution of tumor cell populations: Acquired genetic lability permits stepwise selection of variant sublines and underlies tumor progression, Science, 194, 23, 10.1126/science.959840
Tabassum, 2015, Tumorigenesis: it takes a village, Nat. Rev. Cancer, 15, 473, 10.1038/nrc3971
Gatenby, 2008, A microenvironmental model of carcinogenesis, Nat. Rev. Cancer, 8, 56, 10.1038/nrc2255
Korolev, 2014, Turning ecology and evolution against cancer, Nat. Rev. Cancer, 14, 371, 10.1038/nrc3712
Nawaz, 2016, Computational pathology: Exploring the spatial dimension of tumor ecology, Cancer Lett., 380, 296, 10.1016/j.canlet.2015.11.018
Basanta, 2012, Investigating prostate cancer tumour–stroma interactions: clinical and biological insights from an evolutionary game, Brit. J. Cancer, 106, 174, 10.1038/bjc.2011.517
Orlando, 2012, Cancer treatment as a game: integrating evolutionary game theory into the optimal control of chemotherapy, Phys. Biol., 9, 10.1088/1478-3975/9/6/065007
Pacheco, 2014, The ecology of cancer from an evolutionary game theory perspective, Interface Focus, 4, 10.1098/rsfs.2014.0019
Basanta, 2013, Exploiting ecological principles to better understand cancer progression and treatment, Interface Focus, 3, 10.1098/rsfs.2013.0020
Archetti, 2015, Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer, Proc. Natl. Acad. Sci. USA, 112, 1833, 10.1073/pnas.1414653112
Neumann, 1944
Nash Jr., 1950, Equilibrium points in n-person games, Proc. Natl Acad. Sci. USA, 36, 48, 10.1073/pnas.36.1.48
Smith, 1973, The logic of animal conflict, Nature, 246, 15, 10.1038/246015a0
Alexander, 2002
Boeing, 2010, Defensive avoidance, 476
Kingsland, 1995
Vincent, 1994, An evolutionary game theory for differential equation models with reference to ecosystem management, 356
Grunert, 2021, Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig–MacArthur predator–prey model, Proc. Natl Acad. Sci. USA, 118, 10.1073/pnas.2017463118
Sun, 2021, Statistical mechanics of clock gene networks underlying circadian rhythms, Appl. Phys. Rev., 8, 10.1063/5.0029993
Kepler, 2001, Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations, Biophys. J., 81, 3116, 10.1016/S0006-3495(01)75949-8
Sánchez, 2008, Transcriptional control of noise in gene expression, Proc. Natl Acad. Sci. USA, 105, 5081, 10.1073/pnas.0707904105
Rabbie, 2021, Unraveling the cartography of the cancer ecosystem, Genome Biol., 22, 1, 10.1186/s13059-021-02310-5
Merlo, 2006, Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 6, 924, 10.1038/nrc2013
Ye, 2019, np2QTL: networking phenotypic plasticity quantitative trait loci across heterogeneous environments, Plant J., 99, 796, 10.1111/tpj.14355
Wiens, 2009, And climate change: assessing the assumptions and uncertainties, Proc. Natl Acad. Sci. USA, 106, 19729, 10.1073/pnas.0901639106
West, 1997, A general model for the origin of allometric scaling laws in biology, Science, 276, 122, 10.1126/science.276.5309.122
Chen, 2019, An omnidirectional visualization model of personalized gene regulatory networks, npj Syst. Biol. Appl., 5, 38, 10.1038/s41540-019-0116-1
Landi, 2018, Complexity and stability of ecological networks: a review of the theory, Popul. Ecol., 60, 319, 10.1007/s10144-018-0628-3
Odum, 1953
MacArthur, 1955, Fluctuations of animal populations and a measure of community stability, Ecology, 36, 533, 10.2307/1929601
Elton, 1958
May, 1972, Will a large complex system be stable?, Nature, 238, 413, 10.1038/238413a0
May, 1973
Goodman, 1975, The theory of diversity-stability relationships in ecology, Q. Rev. Biol., 50, 237, 10.1086/408563
Meena, 2023, Emergent stability in complex network dynamics, Nat. Phys., 1
Gross, 2009, Generalized models reveal stabilizing factors in food webs, Science, 325, 747, 10.1126/science.1173536
Allesina, 2012, Stability criteria for complex ecosystems, Nature, 483, 205, 10.1038/nature10832
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B., 58, 267
Zou, 2005, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B. (Stat. Methodol.), 67, 301, 10.1111/j.1467-9868.2005.00503.x
Chambolle, 2004, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20, 89, 10.1023/B:JMIV.0000011321.19549.88
Baldassarre, 2012, A general framework for structured sparsity via proximal optimization, 82
Micchelli, 2013, Regularizers for structured sparsity, Adv. Comput. Math., 38, 455, 10.1007/s10444-011-9245-9
Kim, 2008, A computational approach to the functional clustering of periodic gene-expression profiles, Genetics, 180, 821, 10.1534/genetics.108.093690
Tian, 2022, Single-cell transcriptomic profiling reveals the tumor heterogeneity of small-cell lung cancer, Signal Transduct. Tar., 7, 346, 10.1038/s41392-022-01150-4
Wu, 2021, Recovering dynamic networks in big static datasets, Phys. Rep., 912, 1, 10.1016/j.physrep.2021.01.003
Melo, 2016, Modularity: genes, development, and evolution, Annu. Rev. Ecol. Evol., S. 47, 463, 10.1146/annurev-ecolsys-121415-032409
Alcalá-Corona, 2021, Modularity in biological networks, Front. Genet., 12, 10.3389/fgene.2021.701331
Kashtan, 2005, Spontaneous evolution of modularity and network motifs, Proc. Natl Acad. Sci. USA, 102, 13773, 10.1073/pnas.0503610102
Kashtan, 2007, Varying environments can speed up evolution, Proc. Natl Acad. Sci. USA, 104, 13711, 10.1073/pnas.0611630104
Clune, 2013, The evolutionary origins of modularity, Proc. R. Soc. B-Biol. Sci., 280
Parter, 2007, Environmental variability and modularity of bacterial metabolic networks, BMC Evol. Biol., 7, 1, 10.1186/1471-2148-7-169
Verwoerd, 2011, A new computational method to split large biochemical networks into coherent subnets, BMC Syst. Biol., 7, 5
Ma, 2013, Top-down decomposition of biological networks
West, 1997, A general model for the origin of allometric scaling laws in biology, Science, 276, 122, 10.1126/science.276.5309.122
Wang, 2012, How to cluster gene expression dynamics in response to environmental signals, Brief. Bioinform., 13, 162, 10.1093/bib/bbr032
Zhao, 2005, Structured antedependence models for functional mapping of multiple longitudinal traits, Stat. Appl. Genet Mol., 4, 33
Ren, 2019, Apolipoprotein C1 (APOC1) promotes tumor progression via MAPK signaling pathways in colorectal cancer, Cancer Manag. Res., 29, 4917, 10.2147/CMAR.S192529
Gu, 2023, Apolipoprotein C1 promotes tumor progression in gastric cancer, Oncol. Res., 31, 287, 10.32604/or.2023.028124
Ledergor, 2018, Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma, Nature Med., 24, 1867, 10.1038/s41591-018-0269-2
Gerber, 2018, Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration, Science, 362, 10.1126/science.aaq0681
AlMusawi, 2021, Understanding cell–cell communication and signaling in the colorectal cancer microenvironment, Clin. Transl. Med., 11, 10.1002/ctm2.308
Giladi, 2020, Dissecting cellular crosstalk by sequencing physically interacting cells, Nat. Biotechnol., 38, 629, 10.1038/s41587-020-0442-2
Dimitrov, 2022, Comparison of methods and resources for cell–cell communication inference from single-cell RNA-Seq data, Nature Commun., 13, 3224, 10.1038/s41467-022-30755-0
Pe’er, 2006, Connectivity in heterogeneous landscapes: Analyzing the effect of topography, Landsc. Ecol., 21, 47, 10.1007/s10980-005-1622-7
Turner, 2005, Landscape ecology: what is the state of the science? Annu, Rev. Ecol. Evol. S., 36, 319, 10.1146/annurev.ecolsys.36.102003.152614
Pickett, 1997, Patch dynamics: the transformation of landscape structure and function, 101
Gravel, 2010, And species coexistence in metaecosystems, Am. Nat., 176, 289, 10.1086/655426
Dunbar, 1992, Neocortex size as a constraint on group size in primates, J. Hum. Evol., 22, 469, 10.1016/0047-2484(92)90081-J
Lindenfors, 2021, ‘Dunbar’s number’ deconstructed, Biol. Lett., 17, 10.1098/rsbl.2021.0158
Wang, 2021, Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma, Nature Med., 27, 141, 10.1038/s41591-020-1125-8
Li, 2022, Single-cell transcriptomics reveals cellular heterogeneity and molecular stratification of cervical cancer, Commun. Biol., 5, 1208, 10.1038/s42003-022-04142-w
Chen, 2009, Evaluation of malignancy-risk gene signature in breast cancer patients, Breast Cancer Res. Treat., 120, 25, 10.1007/s10549-009-0357-6
Heaphy, 2009, Mammary field cancerization: molecular evidence and clinical importance, Breast Cancer Res. Treat., 118, 229, 10.1007/s10549-009-0504-0
Gottlieb, 2007, Probabilistic epigenesis, Develop. Sci., 10, 1, 10.1111/j.1467-7687.2007.00556.x
Félix, 2015, Pervasive robustness in biological systems, Nat. Rev. Genet., 16, 483, 10.1038/nrg3949
Griffin, 2020, Analysis of quasi-dynamic ordinary differential equations and the quasi-dynamic replicator, Physica A, 555, 10.1016/j.physa.2020.124422
Karmiloff-Smith, 1992
Wen, 2021, Mapping the genetic architecture of developmental modularity in ornamental plants, Ornam. Plant Res., 1, 3
Bolker, 2000, Modularity in development and why it matters to evo-devo, Amer. Zool., 40, 770
Sun, 2020, Computational identification of gene networks as a biomarker of neuroblastoma risk, Cancers, 12, 2086, 10.3390/cancers12082086
Wang, 2022, A single-cell omics network model of cell crosstalk during the formation of primordial follicles, Cells, 11, 332, 10.3390/cells11030332
Wang, 2022, Vaginal microbiota networks as a mechanistic predictor of aerobic vaginitis, Front. Microbiol., 13
Cao, 2022, Modeling spatial interaction networks of the gut microbiota, Gut Microbes, 14, 10.1080/19490976.2022.2106103
Huang, 2021, An improved Lotka–Volterra model using quantum game theory, Mathematics, 9, 2217, 10.3390/math9182217
Novak, 2013, Density games, J. Theoret. Biol., 334, 26, 10.1016/j.jtbi.2013.05.029
Huang, 2015, Stochastic game dynamics under demographic fluctuations, Proc. Natl. Acad. Sci. USA, 112, 9064, 10.1073/pnas.1418745112
Friedman, 1998, On economic applications of evolutionary game theory, J. Evol. Econ., 8, 15, 10.1007/s001910050054
Friedman, 1991, Evolutionary games in economics, Econometrica, 3, 637, 10.2307/2938222
Kazuo, 2019, A quantum brain model of decision-making process incorporated with social psychology, Neuroquantology, 17, 72
Du, 2001, Entanglement playing a dominating role in quantum games, Phys. Lett. A, 289, 9, 10.1016/S0375-9601(01)00575-8
Bollobás, 2002
Berge, 1984
Liu, 2011, Controllability of complex networks, Nature, 473, 167, 10.1038/nature10011
Battiston, 2020, Networks beyond pairwise interactions: Structure and dynamics, Phy. Rep., 874, 1, 10.1016/j.physrep.2020.05.004
Battiston, 2021, The physics of higher-order interactions in complex systems, Nat. Phys., 17, 1093, 10.1038/s41567-021-01371-4
Mayfield, 2017, Higher-order interactions capture unexplained complexity in diverse communities, Nat. Ecol. Evol., 1, 0062, 10.1038/s41559-016-0062
Caccioli, 2018, Network models of financial systemic risk: a review, J. Comput. Soc. Sci., 1, 81, 10.1007/s42001-017-0008-3
Anand, 2018, The missing links: A global study on uncovering financial network structures from partial data, J. Financ. Stab., 35, 107, 10.1016/j.jfs.2017.05.012
Bardoscia, 2021, The physics of financial networks, Nat. Rev. Phys., 3, 490, 10.1038/s42254-021-00322-5
Schmelz, 2021, Spatial and temporal intratumour heterogeneity has potential consequences for single biopsy-based neuroblastoma treatment decisions, Nature Commun., 12, 6804, 10.1038/s41467-021-26870-z
Patkulkar, 2023, Mapping spatiotemporal heterogeneity in tumor profiles by integrating high-throughput imaging and omics analysis, ACS omega, 8, 6126, 10.1021/acsomega.2c06659
Lagaris, 1998, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., 9, 987, 10.1109/72.712178
Tian, 2006, Stochastic models for regulatory networks of the genetic toggle switch, Proc. Natl Acad. Sci. USA, 103, 8372, 10.1073/pnas.0507818103
Chowdhury, 2015, Stochastic S-system modeling of gene regulatory network, Cogn. Neurodynam., 9, 535, 10.1007/s11571-015-9346-0
Ramón, 2020, Clinical implications of intratumor heterogeneity: challenges and opportunities, J. Mol. Med., 98, 161, 10.1007/s00109-020-01874-2
Vitale, 2021, Intratumoral heterogeneity in cancer progression and response to immunotherapy, Nature Med., 27, 212, 10.1038/s41591-021-01233-9
Kock am Brink, 2023, Intratumoral heterogeneity affects tumor regression and Ki67 proliferation index in perioperatively treated gastric carcinoma, Br. J. Cancer, 128, 375, 10.1038/s41416-022-02047-3
Chambliss, 2016, Precision medicine: from pharmacogenomics to pharmacoproteomics, Clin. Proteom., 13, 1, 10.1186/s12014-016-9127-8
Farzan, 2018, The use of pharmacogenomics, epigenomics, and transcriptomics to improve childhood asthma management: Where do we stand? Pediatr, Pulmonol., 53, 836, 10.1002/ppul.23976
da Silva, 2019, Integrative proteomics and pharmacogenomics analysis of methylphenidate treatment response, Transl. Psychiatry, 9, 308, 10.1038/s41398-019-0649-5
Chen, 2020, Harnessing big ‘omics’ data and AI for drug discovery in hepatocellular carcinoma, Nat. Rev. Gastroenterol. Hepatol., 17, 238, 10.1038/s41575-019-0240-9
Selevsek, 2020, Network integration and modelling of dynamic drug responses at multi-omics levels, Commun. Biol., 3, 573, 10.1038/s42003-020-01302-8
Nassar, 2021, Single-cell multiomics analysis for drug discovery, Metabolites, 11, 729, 10.3390/metabo11110729
Wu, 2022
Arnol, 2019, Modeling cell–cell interactions from spatial molecular data with spatial variance component analysis, Cell Rep., 29, 202, 10.1016/j.celrep.2019.08.077
Brückner, 2021, Learning the dynamics of cell–cell interactions in confined cell migration, Proc. Natl Acad. Sci. USA, 118, 10.1073/pnas.2016602118