The genome, pangenome, and physiological analysis of Leclercia adecarboxylata (kcgeb_e1), a plant growth-promoting bacterium

Esam Eldin Saeed1, Naganeeswaran Sudalaimuthuasari1, Fayas Thayale Purayil1, Mohammed Rafi1, Biduth Kundu2, Ajay Kumar Mishra1, Raja Saeed Al-Maskari2, Amira Mohamed Abdelfattah3, Afaf Kamal Eldin3, Suja George1, Miranda Procter1, Khaled M. Hazzouri1, Khaled MA Amiri2,1
1Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, UAE
2Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE
3Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, UAE

Tóm tắt

Plant growth-promoting bacteria (PGPB) as biofertilizer plays an important role in agriculture practices. In this study, we isolated and identified plant-associated bacteria Leclercia adecarboxylata (kcgeb_e1) from the root region of the halophytic plant Sesuvium verrucosum. We tested its physiological activity and the effect of inoculation, with and without salt, on photosynthesis using Cajanus cajan. Further, we sequenced the whole genome of L. adecarboxylata (kcgeb_e1) and carried out pangenome analysis with 12 other genomes of the same species, which highlights unique genes enriched for pathways involved in abiotic stress tolerance (salinity, drought and heat) and carbohydrate transport. Moreover, gene families involved in abiotic stress tolerance, host adhesion, and transport were under positive selection (e.g., Aldo/keto reductase family, Hemagglutinin, Porin, and sugar transport). We observed a loss of ACC deaminase gene in this pangenome; however, this strain can still produce 1-aminocyclopropane-1-carboxylate (ACC), an enhancer of abiotic stress, which suggests that its homologue, d-cysteine sulfatase, has a bifunctional activity. In addition, this strain has Indole acetic acid (IAA) and phosphate solubilization activity. Combining these findings with the efficiency of colonizing the root surface of Solanum lycopersicum, this strain showed remarkable enhancement of photosynthesis, comparing control to inoculated plants. This increase in photosynthesis is consistent with an increase in sucrose under salt treatment, but not in glucose and fructose, which acts as a sensor in opposing the negative effect of salinity and promoting sustainable growth. Given all this, our study suggests that this PGPB can act as a biofertilizer for sustainable agriculture.

Từ khóa


Tài liệu tham khảo

Hou S, Thiergart T, Vannier N, Mesny F, Ziegler J, Pickel B, et al. A microbiota–root–shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nature Plants. 2021;7(8):1078–92. Bhat MA, Kumar V, Bhat MA, Wani IA, Dar FL, Farooq I, et al. Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Front Microbiol. 2020;11:1952. de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science. 2020;368(6488):270–4. Omae N, Tsuda K. Plant-microbiota interactions in abiotic stress environments. Mol Plant Microbe Interact. 2022;35(7):511–26. Bohley K, Joos O, Hartmann H, Sage R, Liede-Schumann S, Kadereit G. Phylogeny of Sesuvioideae (Aizoaceae)–Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspect Plant Eco Evolut Systemat. 2015;17(2):116–30. Barriuso J, Ramos Solano B, Lucas JA, Lobo AP, García-Villaraco A, Gutiérrez Mañero FJ. Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). Plant-Bacter Interact Strat Techniq Promote Plant Growth. 2008;15:1–17. Saharan B, Nehra V. Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res. 2011;21(1):30. Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments. In: Adu-Gyamfi JJ, editor. Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Dordrecht: Springer; 2002. p. 201–13. Gamalero E, Glick BR. Bacterial modulation of plant ethylene levels. Plant Physiol. 2015;169(1):13–22. Heidari M, Golpayegani A. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agricu Sci. 2012;11(1):57–61. Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, et al. Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci. 2013;4:272. Ruan Y-L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol. 2014;65:33–67. Horacio P, Martinez-Noel G. Sucrose signaling in plants: a world yet to be explored. Plant Signal Behav. 2013;8(3): e23316. Ciereszko I. Sucrose metabolism in plant tissues under stress conditions: key enzymes, localization and function. In: Maksymiec W, editor. Compartmentation of responses to stresses in higher plants, true or false. Kerala: Transworld Research Network; 2009. p. 193–218. Morkunas I, Ratajczak L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol Plant. 2014;36:1607–19. Lukaszuk E, Rys M, Możdżeń K, Stawoska I, Skoczowski A, Ciereszko I. Photosynthesis and sucrose metabolism in leaves of Arabidopsis thaliana aos, ein4 and rcd1 mutants as affected by wounding. Acta Physiol Plant. 2017;39:1–12. Sami F, Yusuf M, Faizan M, Faraz A, Hayat S. Role of sugars under abiotic stress. Plant Physiol Biochem. 2016;109:54–61. McInerney JO, McNally A, O’Connell MJ. Why prokaryotes have pangenomes. Nat Microbiol. 2017;2(4):1–5. Vos M, Hesselman MC, Te Beek TA, van Passel MW, Eyre-Walker A. Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol. 2015;23(10):598–605. Livingstone PG, Morphew RM, Whitworth DE. Genome sequencing and pan-genome analysis of 23 Corallococcus spp. strains reveal unexpected diversity, with particular plasticity of predatory gene sets. Front Microbio. 2018;9:3187. Vos M, Eyre-Walker A. Are pangenomes adaptive or not. Nat Microbio. 2017;2(12):1576. Orhan E, Esitken A, Ercisli S, Turan M, Sahin F. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic. 2006;111(1):38–43. Esitken A, Pirlak L, Turan M, Sahin F. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic. 2006;110(4):324–7. O’Connell PF. Sustainable agriculture-a valid alternative. Outlook Agricu. 1992;21(1):5–12. Ying Y, Wu F, Wu C, Jiang Y, Yin M, Zhou W, et al. Florfenicol resistance in Enterobacteriaceae and whole-genome sequence analysis of florfenicol-resistant Leclercia adecarboxylata strain R25. Int J Genom. 2019;2019:9828504. Yin Z, Hu L, Cheng Q, Jiang X, Xu Y, Yang W, et al. First report of coexistence of three different MDR plasmids, and that of occurrence of IMP-encoding plasmid in Leclercia adecarboxylata. Front Microbiol. 2019;10:2468. Kang S-M, Shahzad R, Bilal S, Khan AL, Park Y-G, Lee K-E, et al. Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol. 2019;19(1):80. https://doi.org/10.1186/s12866-019-1450-6. Kang S-M, Shahzad R, Khan MA, Hasnain Z, Lee K-E, Park H-S, et al. Ameliorative effect of indole-3-acetic acid-and siderophore-producing Leclercia adecarboxylata MO1 on cucumber plants under zinc stress. J Plant Interact. 2021;16(1):30–41. Snak A, Vendruscolo ECG, Santos MF, Fiorini A, Mesa D. Genome sequencing and analysis of plant growth-promoting attributes from Leclercia adecarboxylata. Gene Mol Bio. 2021;44:e20200130. Chen W, Wang Z, Xu W, Hu Y. Genome sequence of Leclercia adecarboxylata QDSM01 with multiple plant growth promoting properties. Plant Growth Regulat. 2023;44:1–15. Araújo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JW, Azevedo JL. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol. 2002;68(10):4906–14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9. https://doi.org/10.1093/molbev/msy096. Salha Y, Sudalaimuthuasari N, Kundu B, AlMaskari RS, Alkaabi AS, Hazzouri KM, et al. Complete genome sequence of Phytobacter diazotrophicus strain UAEU22, a plant growth-promoting bacterium isolated from the date palm rhizosphere. Microbio Resour Announ. 2020. https://doi.org/10.1128/mra.00499-20. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36. https://doi.org/10.1101/gr.215087.116. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6): e1005595. https://doi.org/10.1371/journal.pcbi.1005595. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2. https://doi.org/10.1093/bioinformatics/btv351. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44(14):6614–24. https://doi.org/10.1093/nar/gkw569. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9. https://doi.org/10.1093/bioinformatics/btu153. Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951;26(1):192. Dworkin M, Foster J. Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol. 1958;75(5):592–603. Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant. 2003;118(1):10–5. Chung C, Niemela SL, Miller RH. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci. 1989;86(7):2172–5. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3: e1319. R Core Team R. R: A language and environment for statistical computing. Vienna, Austria. 2013. Cole TJ, Brewer MS. FUSTr: a tool to find gene families under selection in transcriptomes. PeerJ. 2018;6: e4234. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. Miele V, Penel S, Duret L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformat. 2011;12:1–9. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641–50. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91. Kumar K, Amaresan N, Madhuri K. Alleviation of the adverse effect of salinity stress by inoculation of plant growth promoting rhizobacteria isolated from hot humid tropical climate. Ecol Eng. 2017;102:361–6. Richard C. Nouvelles espèces de Enterobacteriaceae. Bull Inst Pasteur. 1984;82(3):255–77. Tamura K, Sakazaki R, Kosako Y, Yoshizaki E. Leclercia adecarboxylata gen. nov., comb. nov., formerly known as Escherichia adecarboxylata. Curr Microbio. 1986;13:179–84. Shahzad R, Waqas M, Khan AL, Al-Hosni K, Kang S-M, Seo C-W, et al. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biol Hung. 2017;68(2):175–86. Kelemu S, Fory P, Zuleta C, Ricaurte Oyola J, Rao I, Lascano C. Detecting Bacterial Endophytes in tropical Grasses of the Brachiaria genus and determining their role in improving plant growth. Afr J Biotech. 2011;10:965–76. Sarma PM, Bhattacharya D, Krishnan S, Lal B. Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium, Leclercia adecarboxylata. Appl Environ Microbio. 2004;70(5):3163–6. https://doi.org/10.1128/AEM.70.5.3163-3166.2004. Sun K, Liu J, Gao Y, Jin L, Gu Y, Wang W. Isolation, plant colonization potential and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci Reports. 2014;4(1):5462. https://doi.org/10.1038/srep05462. Yang P-X, Ma L, Chen M-H, Xi J-Q, He F, Duan C-Q, et al. Phosphate solubilizing ability and phylogenetic diversity of bacteria from P-rich soils around Dianchi lake drainage area of China. Pedosphere. 2012;22(5):707–16. https://doi.org/10.1016/S1002-0160(12)60056-3. Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014;169(1):30–9. https://doi.org/10.1016/j.micres.2013.09.009. Sairanen I, Novák O, Pěnčík A, Ikeda Y, Jones B, Sandberg G, et al. Soluble carbohydrates regulate auxin biosynthesis via PIF Proteins in Arabidopsis. Plant Cell. 2012;24(12):4907–16. https://doi.org/10.1105/tpc.112.104794. Meitzel T, Radchuk R, McAdam EL, Thormählen I, Feil R, Munz E, et al. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. New Phytol. 2021;229(3):1553–65. https://doi.org/10.1111/nph.16956. McAdam EL, Meitzel T, Quittenden LJ, Davidson SE, Dalmais M, Bendahmane AI, et al. Evidence that auxin is required for normal seed size and starch synthesis in pea. New Phytol. 2017;216(1):193–204. https://doi.org/10.1111/nph.14690. Todorovic B, Glick BR. The interconversion of ACC deaminase and D-cysteine desulfhydrase by directed mutagenesis. Planta. 2008;229(1):193–205. https://doi.org/10.1007/s00425-008-0820-3. Singh R, Shelke G, Kumar A, Jha P. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbio. 2015. https://doi.org/10.3389/fmicb.2015.00937.