Các đặc điểm di truyền trong sinh hóa tế bào và sinh lý cây trồng của hai dòng gần đồng hợp gen của lúa mì (Triticum aestivum) có khả năng chịu lạnh khác nhau

Plant Cell Reports - Tập 36 - Trang 1801-1814 - 2017
Wenqiang Wang1, Qunqun Hao2, Wenlong Wang1, Qinxue Li1, Wei Wang1
1State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
2State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China

Tóm tắt

Khả năng chịu lạnh ở cây taft chủ yếu dựa vào con đường tín hiệu chống đông lạnh độc lập với ABA hơn là con đường tín hiệu chống đông lạnh phụ thuộc vào ABA. Hai dòng gần đồng hợp gen của lúa mì (Triticum aestivum), được gọi là tafs (nhạy cảm với lạnh) và taft (chịu lạnh), đã được tách riêng trong phòng thí nghiệm và các đặc điểm tế bào học và sinh lý của chúng dưới điều kiện đông lạnh đã được nghiên cứu. Cấu trúc vi mô của proplastid, màng tế bào và ti thể ít bị tổn thương hơn bởi điều trị đông lạnh ở cây taft so với cây tafs. Hàm lượng chlorophyll, ATP và protein màng tilakoid cao hơn đáng kể, trong khi hàm lượng malondialdehyde thấp hơn đáng kể ở cây taft so với cây tafs dưới điều kiện đông lạnh. Năng lực chống oxy hóa, được chỉ ra bởi sự tích tụ các loài oxy phản ứng và hoạt động của enzyme chống oxy hóa, cùng với mức độ biểu hiện gen tương đối lớn hơn ở cây taft so với cây tafs. Hàm lượng đường hòa tan và axit abscisic (ABA) cao hơn đáng kể ở cây taft so với cây tafs cả trong điều kiện bình thường và đông lạnh. Mức độ biểu hiện tăng cường của một số gen liên quan đến khả năng chịu lạnh cao hơn ở cây taft so với cây tafs dưới điều trị đông lạnh. Sự bổ sung natri tungstate, một chất ức chế tổng hợp ABA, chỉ dẫn đến việc ức chế một phần khả năng chịu lạnh ở cây taft và làm giảm biểu hiện của một số gen phụ thuộc ABA. Do đó, cả hai con đường tín hiệu phụ thuộc và không phụ thuộc vào ABA đều tham gia vào khả năng chịu lạnh của cây taft. Đồng thời, khả năng chịu lạnh ở cây taft chủ yếu dựa vào con đường tín hiệu chống đông lạnh không phụ thuộc ABA hơn là con đường tín hiệu chống đông lạnh phụ thuộc vào ABA.

Từ khóa


Tài liệu tham khảo

Akter K, Kato M, Sato Y, Kaneko Y, Takezawa D (2014) Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha. J Plant Physiol 171:1334–1343 Carpenter JF, Crowe JH (1988) The mechanism of cryoprotection of protein solutes. Cryobiology 25:244–255 Chen G, Liu S, Zhang C, Lu C (2004) Effects of drought on photosynthetic characteristics of flag leaves of a newly-developed super-high-yield rice hybrid. Photosynthetica 42:573–578 Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679 Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52 Degenhardt B, Gimmler H, Hose E, Hartung W (2000) Effect of alkaline and saline substrates on ABA content, distribution and transport in plant roots. Plant Soil 225:83–94 Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270 Dhillon T, Pearce ST, Stockinger EJ, Distelfeld A, Li CX, Knox AK (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858 Ding YL, Li H, Zhang XY, Xie Q, Yang SH (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289 Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690 Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875 Foyer CH, Vanacker H, Gomez LD, Harbinson J (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiol Biochem 40:659–668 Frederiks TM, Christopher JT, Harvey GL, Sutherland MW (2012) Current and emerging screening methods to identify post-head emergence freezing adaptation in wheat and barley. J Exp Bot 63:5405–5416 Gill BS, Appels R, Botha-Oberholster AM, Buell CR (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168:1087–1096 Guajardo E, Correa JA, Contreras-Porcia L (2016) Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta 243:767–781 Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Biol 41:187–223 Hui Z, Tian FX, Wang GK, Wang W (2012) The antioxidative defense system is involved in the delayed senescence in a wheat mutant tasg1. Plant Cell Rep 31:1073–1084 Klotke J, Kopka J, Gatzke N, Heyer AG (2004) Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation evidence for a role of raffinose in cold acclimation. Plant Cell Environ 27:1395–1404 Kobayashi F, Takumi S, Nakamura C (2008) Increased freezing tolerance in an ABA-hypersensitive mutant of common wheat. J Plant Physiol 165:224–232 Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673 Li YJ, Fang Y, Fu YR, Huang JG, Chang-Ai Wu CA, Zheng CC (2013) NFYA1 is involved in regulation of postgermination growth arrest under salt stress in Arabidopsis. PLoS One 8(e6):1289 Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382 Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993 Mayer BF, Benalia MAA, Demonea J, Bertrandb A (2015) Cold acclimation induces distinctive changes in the chromatin state and transcript levels of COR genes in Cannabis sativa varieties with contrasting cold acclimation capacities. Physiol Plant 155:281–295 Nagao M, Minami A, Arakawa K, Fujikawa S, Takezawa D (2005) Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. J Plant Physiol 162:169–180 Novák A, Boldizsár Á, Ádám É, Kozma-Bognár L, Majláth I (2016) Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals. J Exp Bot 67:1285–1295 Parida AK, Das AB, Mittra B (2003) Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica 41:191–200 Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63 Pearce RS (1999) Molecular analysis of acclimation to cold. Plant Growth Regul 29:47–76 Ploschuk EL, Bado LA, Salinas M, Wassner DF, Windauer LB (2014) Photosynthesis and fluorescence responses of Jatropha curcas to chilling and freezing stress during early vegetative stages. Environ Exp Bot 102:18–26 Poppek D, Grune T (2006) Proteasomal defense of oxidative protein modifications. Antioxid Redox Signal 8:173–184 Quan RD, Shang M, Zhang H, Zhao YX (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166:141–149 Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212 Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150 Sairam PK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904 Sasaki K, Christov NK, Tsuda S, Imai R (2014) Identification of a novel LEA protein involved in freezing tolerance in wheat. Plant Cell Physiol 55:136–147 Sehrawat A, Gupta R, Deswal R (2013) Nitric oxide-cold stress signalling cross-talk, evolution of a novel regulatory mechanism. Proteomics 13:1816–1835 Seo PJ, Kim MJ, Park JY, Kim SY (2010) Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J 61:661–671 Tarkowski LP, Van den Ende W (2015) Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Front Plant Sci 6:203 Thalhammer A, Bryant G, Sulpice R, Hincha DK (2014) Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo. Plant Physiol 166:190–201 Theocharis A, Clément C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105 Tian FX, Gong JF, Zhang J, Wang W (2013) Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. J Exp Bot 64:1509–1520 Tsuda K, Tsvetanov S, Takumi S, Mori N, Atanas Atanassov A (2000) New members of a cold-responsive group-3 Lea/Rab-related Cor gene family from common wheat (Triticum aestivum L.). Genes Genet Syst 75:179–188 Uno Y, Furihata T, Abe H, Yoshida R (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. PNAS 97:11632–11637 Velicka R, Rimkeviciene M, Novickiene L, Anisimoviene N, Brazauskiene I (2005) Improvement of oil rape hardening and frost tolerance. Russ J Plant Physiol 52:473–480 Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211 Waalen WM, Stavang JA, Olsen JE, Rognli OA (2014) The relationship between vernalization saturation and the maintenance of freezing tolerance in winter rapeseed. Environ Exp Bot 106:164–173 Wang WQ, Hao QQ, Tian FX, Li QX, Wang W (2016) The stay-green phenotype of wheat mutant tasg1 is associated with altered cytokinin metabolism. Plant Cell Rep 35:585–599 Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cisacting regulatory elements in osmotic- and coldstress-responsive promoters. Trends Plant Sci 10:88–94 Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514 Zhang LL, Zhao MG, Tian QY, Zhang WH (2011) Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing. Planta 234:445–457 Zheng CF, Jiang D, Liu FL, Dai TB (2009a) Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582 Zheng YL, Feng YL, Lei YB, Yang CY (2009b) Different photosynthetic responses to night chilling among twelve populations of Jatropha curcas. Photosynthetica 47:559–566 Zhu XL, Qi L, Liu X, Cai SB, Xu HJ (2014) The wheat ethylene response factor transcription factor pathogen-induced erf1 mediates host responses to both the necrotrophic pathogen rhizoctonia cerealis and freezing stresses. Plant Physiol 164:1499–1514