The generalized cubic functional equation and the stability of cubic Jordan $$*$$ ∗ -derivations
Tóm tắt
Từ khóa
Tài liệu tham khảo
An, J., Cui, J., Park, C.: Jordan $$*$$ ∗ -derivations on $$C^*$$ C ∗ -algebras and $$JC^*$$ J C ∗ -algebras, Abst. Appl. Anal. 2008. Article ID 410437 (2008)
Bodaghi, A., Alias, I.A.: Approximate ternary quadratic derivations on ternary Banach algebras and $$C^*$$ C ∗ -ternary rings. Adv. Differ. Equ. 2012. Article No. 11 (2012)
Bodaghi, A., Alias, I.A., Ghahramani, M.H.: Approximately cubic functional equations and cubic multipliers. J. Inequal. Appl. 2011. Article No. 53 (2011)
Bodaghi, A., Alias, I.A., Ghahramani, M.H.: Ulam stability of a quartic functional equation, Abst. Appl. Anal. 2012. Article ID 232630. doi: 10.1155/2012/232630
Bodaghi, A., Eshaghi Gordji, M., Paykan, K.: Approximate multipliers and approximate double centralizers: a fixed point approach. An. St. Univ. Ovidius Constanta 20(3), 21–32 (2012)
Bodaghi, A., Zabandan, G.: On the stability of quadratic ( $$*$$ ∗ -) derivations on ( $$*$$ ∗ -) Banach algebras. Thai J. Math (to appear)
Cădariu, L., Radu, V.: Fixed points and the stability of quadratic functional equations. An. Univ. Timişoara Ser. Mat. Inform. 41, 25–48 (2003)
Cădariu, L., Radu, V.: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 346, 43–52 (2004)
Czerwik, S.: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hambg. 62, 59–64 (1992)
Diaz, J.B., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968)
Eshaghi Gordji, M., Bodaghi, A., Park, C.: A fixed point approach to the stability of double Jordan centralizers and Jordan multipliers on Banach algebras. UPB Sci. Bull. Ser. A 73(2), 65–73 (2011)
Eshaghi Gordji, M., Najati, A.: Approximately $$J^*$$ J ∗ -homomorphisms: a fixed point approach. J. Geom. Phys. 6, 809–814 (2010)
Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27, 222–224 (1941)
Hyers, D.H., Isac, G., Rassias, ThM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
Koh, H., Kang, D.: On the stability of a generalized cubic functional equation. Bull. Korean Math. Soc. 45(4), 739–748 (2008)
Najati, A.: Hyers–Ulam–Rassias stability of a cubic functional equation. Bull. Korean Math. Soc. 44(4), 825–840 (2007)
Najati, A.: The generalized Hyers–Ulam–Rassias stability stability of a cubic functional equation. Turk. J. Math. 31, 395–408 (2007)
Jang, S.Y., Park, C.: Approximate $$*$$ ∗ -derivations and approximate quadratic $$*$$ ∗ -derivations on $$C^*$$ C ∗ -algebras. J. Inequal. Appl. 2011. Article No. 55 (2011)
Jun, K.W., Kim, H.M.: The generalized Hyers–Ulam–Russias stability of a cubic functional equation. J. Math. Anal. Appl. 274(2), 267–278 (2002)
Jun, K.W., Kim, H.M.: On the Hyers–Ulam–Rassias stability of a general cubic functional equation. Math. Inequal. Appl. 6(2), 289–302 (2003)
Park, C.: Homomorphisms between Poisson $$JC^*$$ J C ∗ -algebras. Bull. Braz. Math. Soc. 36, 79–97 (2005)
Park, C.: Fixed points and Hyers–Ulam–Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory Appl. 2007. Art. ID 50175 (2007)
Park, C., Bodaghi, A.: On the stability of $$*$$ ∗ -derivations on Banach $$*$$ ∗ -algebras, Adv. Differ. Equ. 2012. Article No. 138 (2012)
Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
Ravi, K., Rassias, J.M., Narasimman, P.: Stability of a cubic fuctional equation in fuzzy normed space. J. Appl. Anal. Comput. 1(3), 411–425 (2011)
Saadati, R., Vaezpour, S.M., Park, C.: The stability of the cubic functional equation in various spaces. Math. Commun. 16(3), 131–145 (2011)
Ulam, S.M.: Problems in Modern Mathematics, Chapter VI, Science edn. Wiley, New York (1940)