The generalized cubic functional equation and the stability of cubic Jordan $$*$$ ∗ -derivations

Springer Science and Business Media LLC - Tập 59 Số 2 - Trang 235-250 - 2013
Abasalt Bodaghi1, Seyed Mohsen Moosavi2, Hamidreza Rahimi3
1Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran
2Department of Basic Sciences, Eyvanekey Institute of Higher Education, Garmsar, Iran
3Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

An, J., Cui, J., Park, C.: Jordan $$*$$ ∗ -derivations on $$C^*$$ C ∗ -algebras and $$JC^*$$ J C ∗ -algebras, Abst. Appl. Anal. 2008. Article ID 410437 (2008)

Bodaghi, A., Alias, I.A.: Approximate ternary quadratic derivations on ternary Banach algebras and $$C^*$$ C ∗ -ternary rings. Adv. Differ. Equ. 2012. Article No. 11 (2012)

Bodaghi, A., Alias, I.A., Ghahramani, M.H.: Approximately cubic functional equations and cubic multipliers. J. Inequal. Appl. 2011. Article No. 53 (2011)

Bodaghi, A., Alias, I.A., Ghahramani, M.H.: Ulam stability of a quartic functional equation, Abst. Appl. Anal. 2012. Article ID 232630. doi: 10.1155/2012/232630

Bodaghi, A., Eshaghi Gordji, M., Paykan, K.: Approximate multipliers and approximate double centralizers: a fixed point approach. An. St. Univ. Ovidius Constanta 20(3), 21–32 (2012)

Bodaghi, A., Zabandan, G.: On the stability of quadratic ( $$*$$ ∗ -) derivations on ( $$*$$ ∗ -) Banach algebras. Thai J. Math (to appear)

Cădariu, L., Radu, V.: Fixed points and the stability of quadratic functional equations. An. Univ. Timişoara Ser. Mat. Inform. 41, 25–48 (2003)

Cădariu, L., Radu, V.: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 346, 43–52 (2004)

Czerwik, S.: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hambg. 62, 59–64 (1992)

Diaz, J.B., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968)

Eshaghi Gordji, M., Bodaghi, A., Park, C.: A fixed point approach to the stability of double Jordan centralizers and Jordan multipliers on Banach algebras. UPB Sci. Bull. Ser. A 73(2), 65–73 (2011)

Eshaghi Gordji, M., Najati, A.: Approximately $$J^*$$ J ∗ -homomorphisms: a fixed point approach. J. Geom. Phys. 6, 809–814 (2010)

Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27, 222–224 (1941)

Hyers, D.H., Isac, G., Rassias, ThM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)

Koh, H., Kang, D.: On the stability of a generalized cubic functional equation. Bull. Korean Math. Soc. 45(4), 739–748 (2008)

Najati, A.: Hyers–Ulam–Rassias stability of a cubic functional equation. Bull. Korean Math. Soc. 44(4), 825–840 (2007)

Najati, A.: The generalized Hyers–Ulam–Rassias stability stability of a cubic functional equation. Turk. J. Math. 31, 395–408 (2007)

Jang, S.Y., Park, C.: Approximate $$*$$ ∗ -derivations and approximate quadratic $$*$$ ∗ -derivations on $$C^*$$ C ∗ -algebras. J. Inequal. Appl. 2011. Article No. 55 (2011)

Jun, K.W., Kim, H.M.: The generalized Hyers–Ulam–Russias stability of a cubic functional equation. J. Math. Anal. Appl. 274(2), 267–278 (2002)

Jun, K.W., Kim, H.M.: On the Hyers–Ulam–Rassias stability of a general cubic functional equation. Math. Inequal. Appl. 6(2), 289–302 (2003)

Park, C.: Homomorphisms between Poisson $$JC^*$$ J C ∗ -algebras. Bull. Braz. Math. Soc. 36, 79–97 (2005)

Park, C.: Fixed points and Hyers–Ulam–Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory Appl. 2007. Art. ID 50175 (2007)

Park, C., Bodaghi, A.: On the stability of $$*$$ ∗ -derivations on Banach $$*$$ ∗ -algebras, Adv. Differ. Equ. 2012. Article No. 138 (2012)

Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

Ravi, K., Rassias, J.M., Narasimman, P.: Stability of a cubic fuctional equation in fuzzy normed space. J. Appl. Anal. Comput. 1(3), 411–425 (2011)

Saadati, R., Vaezpour, S.M., Park, C.: The stability of the cubic functional equation in various spaces. Math. Commun. 16(3), 131–145 (2011)

Ulam, S.M.: Problems in Modern Mathematics, Chapter VI, Science edn. Wiley, New York (1940)

Yang, S.Y., Bodaghi, A., Mohd Atan, K.A.: Approximate cubic $$*$$ ∗ -derivations on Banach $$*$$ ∗ -algebras. Abst. Appl. Anal. 2012. Article ID 684179. doi: 10.1155/2012/684179