The generalized Kelvin chain-based model for an orthotropic viscoelastic material
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bažant, Z.P.: Constitutive equation of wood at variable humidity and temperature. Wood Sci. Technol. 19, 159–177 (1985). ISSN 1432-5225
Bažant, Z.P., Jirásek, M.: Fundamentals of linear viscoelasticity. In: Bažant, Z.P., Jirásek, M. (eds.) Creep and Hygrothermal Effects in Concrete Structures. Solid Mechanics and Its Applications, pp. 9–28. Springer, Dordrecht (2018). ISBN 978-94-024-1136-2. https://doi.org/10.1007/978-94-024-1138-6_2
Bažant, Z.P., Wu, S.T.: Dirichlet series creep function for aging concrete. J. Eng. Mech. Div. 99(2), 367–387 (1973). https://doi.org/10.1061/JMCEA3.0001741. ISSN 0044-7951
Bengtsson, C., Kliger, R.: Bending creep of high-temperature dried spruce timber. Holzforschung 57(1), 95–100 (2003). https://doi.org/10.1515/HF.2003.015. ISSN 0018-3830
Bengtsson, R., Afshar, R., Gamstedt, E.K.: An applicable orthotropic creep model for wood materials and composites. Wood Sci. Technol. 56(6), 1585–1604 (2022). https://doi.org/10.1007/s00226-022-01421-x. ISSN 0043-7719
Distéfano, N.: On the identification problem in linear viscoelasticity. Z. Angew. Math. Mech. 50(11), 683–690 (1970). https://doi.org/10.1002/zamm.19700501106. ISSN 00442267
EN 1995-1-1:2004 Eurocode 5: Design of timber structures – Part 1-1: General - Common rules and rules for buildings. The European Union Per Regulation 305/2011 (2004)
Endo, V.T., de Carvalho Pereir, J.C.: Linear orthotropic viscoelasticity model for fiber reinforced thermoplastic material based on Prony series. Mech. Time-Depend. Mater. 21, 199–221 (2017). https://doi.org/10.1007/s11043-016-9329-8
Fortino, S., Mirianon, F., Toratti, T.: A 3D moisture-stress FEM analysis for time dependent problems in timber structures. Mech. Time-Depend. Mater. 13(4), 333–356 (2009). https://doi.org/10.1007/s11043-009-9103-z. ISSN 1385-2000
Ghosh, K., Lopez-Pamies, O.: On the two-potential constitutive modeling of dielectric elastomers. Meccanica 56(6), 1505–1521 (2021). https://doi.org/10.1007/s11012-020-01179-1. [cit. 2024-01-08]. ISSN 0025-6455
Ghosh, K., Shrimali, B., Kumar, A., Lopez-Pamies, O.: The nonlinear viscoelastic response of suspensions of rigid inclusions in rubber: I—Gaussian rubber with constant viscosity. Journal of the Mechanics and Physics of Solids [online], 154 (2021). https://doi.org/10.1016/j.jmps.2021.104544. [Cit. 2024-01-08]. ISSN 00225096
Hanhijärvi, A., Hunt, D.: Experimental indication of interaction between viscoelastic and mechano-sorptive creep. Wood Sci. Technol. 32(1), 57–70 (1998). https://doi.org/10.1007/BF00702560. ISSN 0043-7719
Hanhijärvi, A., Mackenzie-Helnwein, P.: Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. I: orthotropic viscoelastic-mechanosorptive-plastic material model for the transverse plane of wood. J. Eng. Mech. 129(9), 996–1005 (2003). https://doi.org/10.1061/(ASCE)0733-9399(2003)129:9(996). ISSN 0733-9399
Holzer, S.M., Loferski, J.R., Dillard, D.A.: A review of creep in wood: concepts relevant to develop long-term behavior predictions for wood structures. Wood Fibre Sci. 21(4), 376–392 (1989). ISSN 7356161
Huč, S., Svensson, S.: Coupled two-dimensional modeling of viscoelastic creep of wood. Wood Sci. Technol. 52(1), 29–43 (2018). https://doi.org/10.1007/s00226-017-0944-3. ISSN 0043-7719
Hunt, D.G., Shelton, C.F.: Progress in the analysis of creep in wood during concurrent moisture changes. J. Mater. Sci. 22(1), 313–320 (1987). https://doi.org/10.1007/BF01160586. ISSN 0022-2461
Jirásek, M., Zeman, J.: Přetváření a porušování materiálů: dotvarování, plasticita, lom a poškození. ČVUT Publishing, Praha (2006). ISBN 80-01-03555-7
Kaliske, M.: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput. Methods Appl. Mech. Eng. 185(2–4), 225–243 (2000). https://doi.org/10.1016/S0045-7825(99)00261-3. ISSN 00457825
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on Neural Networks, pp. 1942–1948. IEEE (1995). ISBN 0-7803-2768-3. https://doi.org/10.1109/ICNN.1995.488968
Lawson, J.D.: An order five Runge–Kutta process with extended region of stability. SIAM J. Numer. Anal. 3(4), 593–597 (1966). https://doi.org/10.1137/0703051. [cit. 2024-01-08]. ISSN 0036-1429
Liu, T.: Creep of wood under a large span of loads in constant and varying environments. Holz Roh- Werkst. 52(1), 63–70 (1994). https://doi.org/10.1007/BF02615022. ISSN 0018-3768
Lockett, F.J.: Nonlinear viscoelastic solids. XI + 195. S. m. Fig. London/New York 1972. Academic Press. Z. Angew. Math. Mech. 54(4), 288–288 (1974). https://doi.org/10.1002/zamm.19740540422. ISSN 00442267
Milch, J., Tippner, J., Sebera, V., Brabec, M.: Determination of the elasto-plastic material characteristics of Norway spruce and European beech wood by experimental and numerical analyses. Holzforschung 70(11), 1081–1092 (2016). https://doi.org/10.1515/hf-2015-0267
Nowacki, W.: Theorie des Kriechens. Lineare Viskoelastizität. Franz Deuticke, Wien (1965)
Ozyhar, T., Hering, S., Niemz, P.: Viscoelastic characterization of wood: time dependence of the orthotropic compliance in tension and compression. J. Rheol. 57(2), 699–717 (2013). https://doi.org/10.1122/1.4790170. ISSN 0148-6055
Pister, K.S.: Mathematical modeling for structural analysis and design. Nucl. Eng. Des. 18(3), 353–375 (1972). https://doi.org/10.1016/0029-5493(72)90108-2. ISSN 00295493
Ranta-Maunus, A.: The viscoelasticity of wood at varying moisture content. Wood Sci. Technol. 9(3), 189–205 (1975). https://doi.org/10.1007/BF00364637. ISSN 0043-7719
Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen a, D., Eiben, A.E. (eds.) Evolutionary Programming VII. Lecture Notes in Computer Science, pp. 591–600. Springer, Berlin (1998). ISBN 978-3-540-64891-8. https://doi.org/10.1007/BFb0040810
Svensson, S., Toratti, T.: Mechanical response of wood perpendicular to grain when subjected to changes of humidity. Wood Sci. Technol. 36(2), 145–156 (2002). https://doi.org/10.1007/s00226-001-0130-4. ISSN 0043-7719
Toratti, T.: Creep of timber beams in a variable environment. Dissertation thesis, Helsinki University of Technology (1992)
Toratti, T., Svensson, S.: Mechano-sorptive experiments perpendicular to grain under tensile and compressive loads. Wood Sci. Technol. 34(4), 317–326 (2000). https://doi.org/10.1007/s002260000059. ISSN 0043-7719
Vidal-Sallé, E., Chassagne, P.: Constitutive equations for orthotropic nonlinear viscoelastic behaviour using a generalized Maxwell model application to wood material. Mech. Time-Depend. Mater. 11(2), 127–142 (2007). https://doi.org/10.1007/s11043-007-9037-2. ISSN 1385-2000