Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Gen NF-YC tỏi, AsNF-YC8, điều chỉnh tích cực khả năng chịu áp lực thẩm thấu không ion ở thuốc lá
Tóm tắt
Để điều tra mối quan hệ giữa yếu tố nhân bản Y (NF-Y) và khả năng chịu stress trong tỏi, chúng tôi đã nhân bản một gen thuộc họ NF-Y, AsNF-YC8 từ tỏi, gen này được điều chỉnh tăng lên rõ rệt ở giai đoạn mất nước. Các phân tích mẫu biểu hiện trong tỏi cho thấy rằng AsNF-YC8 được kích thích thông qua axit abscisic (ABA) và các stress vô cơ, chẳng hạn như NaCl và PEG. So với các cây giống hoang dã, cây thuốc lá chuyển gen AsNF-YC8 biểu hiện quá mức cho thấy tỷ lệ nảy mầm hạt cao hơn, chiều dài rễ dài hơn và sự phát triển tốt hơn dưới các áp lực muối và hạn hán. Dưới áp lực hạn hán, các cây chuyển gen duy trì hàm lượng nước tương đối (RWC) cao hơn, quá trình quang hợp ròng, mức độ malondialdehyde (MDA) thấp hơn, và ít rò rỉ ion (IL) hơn so với các cây giống hoang dã đối chứng. Những kết quả này cho thấy khả năng chịu đựng cao của các cây chuyển gen trước áp lực hạn hán so với dòng WT. Các dòng thuốc lá chuyển gen tích lũy ít loài oxy phản ứng (ROS) hơn và biểu hiện hoạt tính enzyme chống oxy hóa cao hơn so với các cây giống hoang dã (WT) dưới áp lực hạn hán, điều này cho thấy rằng sự biểu hiện quá mức của AsNF-YC8 cải thiện hệ thống phòng thủ chống oxy hóa thông qua việc điều chỉnh hoạt tính của các enzyme chống oxy hóa này, từ đó bảo vệ các dòng chuyển gen khỏi áp lực hạn hán. Những kết quả này gợi ý rằng AsNF-YC8 đóng một vai trò quan trọng trong khả năng chịu đựng stress do hạn hán và muối.
Từ khóa
#yếu tố nhân bản Y #NF-Y #tỏi #khả năng chịu stress #áp lực thẩm thấu #thuốc lá #axit abscisic #ion #oxy phản ứng #enzyme chống oxy hóaTài liệu tham khảo
Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447
Borde M, Dudhane M, Jite P (2012) Growth, water use efficiency and antioxidant defense responses of mycorrhizal and non mycorrhizal Allium sativum L. under drought stress condition. Ann Plant Sci 1:01
Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254
Cai X, Ballif J, Endo S, Davis E, Liang M, Chen D, Wu Y (2007) A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol 145:98–105
Cao S, Kumimoto RW, Siriwardana CL, Risinger JR, Holt BF III (2011) Identification and characterization of NF-Y transcription factor families in the monocot model plant Brachypodium distachyon. PLoS One 6(6):e21805
Čatský J (1960) Determination of water deficit in disks cut out from leaf blades. Biol Plantarum 2(1):76–78
Ceribelli M, Dolfini D, Merico D, Gatta R, Viganò AM, Pavesi G, Mantovani R (2008) The histone-like NF-Y is a bifunctional transcription factor. Mol Cell Biol 28(6):2047–2058
Chen M, Zhao Y, Zhuo C, Lu S, Guo Z (2014) Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnol J 13(4):482–491
Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis. Trends Plant Sci 5:187–188
Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270
Elstner FF, Heupel C (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620
FitzGerald PC, Shlyakhtenko A, Mir AA, Vinson C (2004) Clustering of DNA sequences in human promoters. Genome Res 14(8):1562–1574
Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(7):1866–1875
Frontini M, Imbriano C, Manni I, Mantovani R (2004) Cell-cycle regulation of NF-YC nuclear localization. Cell Cycle 3(2):205–210
Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Bio 9:436–442
Gao Q, Zhao MR, Li F, Guo Q, Xing S, Wang W (2008) Expansins and coleoptile elongation in wheat. Protoplasma 233:73–81
Gay C, Gebicki JM (2000) A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal Biochem 284:217–220
Giacomelli L, Masi A, Ripoll DR, Lee MJ, van Wijk KJ (2007) Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol Biol 65(5):627–644
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930
Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442
Gray DJ (1989) Effects of dehydration and exogenous growth regulators on dormancy, quiescence and germination of grape somatic embryos. Vitro Cell Dev-PL 25(12):1173–1178
Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179
Hackenberg D, Keetman U, Grimm B (2012) Homologous NF-YC2 subunit from Arabidopsis and tobacco is activated by photooxidative stress and induces flowering. Int J Mol Sci 13:3458–3477
Han X, Tang S, An Y, Zheng DC, Xia XL, Yin WL (2013) Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis. J Exp Bot 64:4589–4601
Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SC (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231
Klute A (1986) Water retention: laboratory methods. Methods of soil analysis: part 1—physical and mineralogical methods, (methodsofsoilan1)., pp 635–662
Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18
Leyva-González MA, Ibarra-Laclette E, Cruz-Ramírez A, Herrera-Estrella L (2012) Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members. PLoS One 7:e48138
Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251
Li YJ, Fang Y, Fu YR, Huang JG, Wu CA, Zheng CC (2013a) NFYA1 is involved in regulation of postgermination growth arrest under salt stress in Arabidopsis. PLoS One 8:e61289
Li L, Yu Y, Wei J, Huang G, Zhang D, Liu Y, Zhang L (2013b) Homologous HAP5 subunit from Picea wilsonii improved tolerance to salt and decreased sensitivity to ABA in transformed Arabidopsis. Planta 238:345–356
Ma X, Zhu X, Li C, Song Y, Zhang W, Xia G, Wang M (2015) Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana. Plant Physiol Bioch 86:34–43
Mito T, Seki M, Shinozaki K, Ohme-Takagi M, Matsui K (2011) Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice. Plant Biotechnol J 9(7):736–746
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. P Natl Acad Sci 104:16450–16455
Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129
Quach TN, Nguyen HT, Valliyodan B, Joshi T, Xu D, Nguyen HT (2015) Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response. Mol Genet Genomics 290(3):1095–1115
Ramiro DA, Guerreiro-Filho O, Mazzafera P (2006) Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella. J Chem Ecol 32:1977–1988
Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157(1):113–128
Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Yamaguchi-Shinozaki K (2014) Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26(12):4954–4973
Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 66(4):361–378
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1-26. Article ID 217037. doi:10.1155/2012/217037
Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417
Siefers N, Dang KK, Kumimoto RW, Bynum WE, Tayrose G, Holt BF (2009) Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol 149:625–641
Son JH, Park KC, Lee SI, Kim HH, Kim JH, Kim SH, Kim NS (2012) Isolation of cold-responsive genes from garlic, Allium sativum. Genes Genom 34(1):93–101
Steidl S, Tüncher A, Goda H, Guder C, Papadopoulou N, Kobayashi T, Tsukagoshi N, Kato M, Brakhage AA (2004) A single subunit of a heterotrimeric CCAAT-binding complex carries a nuclear localization signal: piggy back transport of the pre-assembled complex to the nucleus. J Mol Biol 342(2):515–524
Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161:613–619
Sun X, Zhou S, Meng F, Liu S (2012) De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep 31:1823–1828
Testa A, Donati G, Yan P, Romani F, Huang THM, Viganò MA, Mantovani R (2005) Chromatin immunoprecipitation (ChIP) on chip experiments uncover a widespread distribution of NF-Y binding CCAAT sites outside of core promoters. J Biol Chem 280(14):13606–13615
Thomson M, Ali M (2003) Garlic [Allium sativum]: a review of its potential use as an anti-cancer agent. Curr Cancer Drug Tar 3(1):67–81
Van Ha C, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, WatanabeY TLSP (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. P Natl Acad Sci 111:851–856
Warpeha KM, Upadhyay S, Yeh J, Adamiak J, Hawkins SI, Lapik YR, Kaufman LS (2007) The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol 143:1590–1600
Weber H, Chételat A, Reymond P, Farmer EE (2004) Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant J 37:877–888
Yan DH, Xia X, Yin W (2013) NF-YB family genes identified in a poplar genome-wide analysis and expressed in Populus euphratica are responsive to drought stress. Plant Mol Bio Rep 31:363–370
Zhang DZ, Wang PH, Zhao HX (1990) Determination of the content of free proline in wheat leaves. Plant Physiol Commun 4:62–65
Zhou SM, Sun XD, Yin SH, Kong XZ, Zhou S, Xu Y, Luo Y, Wang W (2014) The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance. Plant Physiol Biochem 84:213–223