Tương lai của suy tim với phân suất tống máu bảo tồn

Herz - 2022
Frank R. Heinzel1,2, Sanjiv J. Shah3
1Medizinische Klinik mit Schwerpunkt Kardiologie, Charité – Universitätsmedizin, Campus Virchow-Klinikum, Berlin, Germany
2Partner Site Berlin, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Berlin, Germany
3Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA

Tóm tắt

Suy tim (HF) với phân suất tống máu bảo tồn (HFpEF) là một hội chứng đa tạng, toàn thân liên quan đến nhiều bất thường sinh lý bệnh tim mạch và ngoài tim. Bởi vì HFpEF là một hội chứng không đồng nhất và kháng lại phương pháp "đồng dạng" nên việc điều trị nó đã gặp rất nhiều khó khăn. Vì lý do này, một số nhóm nghiên cứu đã và đang làm việc nhằm phát triển các phương pháp phân loại HFpEF và thử nghiệm các liệu pháp điều trị nhắm vào các kiểu HFpEF đã được xác định. Ngoài các chiến lược phân loại thông thường dựa trên sự đồng bệnh, nguyên nhân, tái cấu trúc thất trái, và các kiểu huyết động học, các nhà nghiên cứu đã kết hợp việc phân loại sâu với các chiến lược phân tích sáng tạo (ví dụ: học máy) để phân loại HFpEF thành các kiểu đồng nhất về mặt trị liệu trong vài năm qua. Mặc dù có sự hào hứng ngày càng tăng với những cách tiếp cận như vậy, vẫn có một số cạm bẫy tiềm năng trong việc sử dụng chúng, và có một nhu cầu cấp thiết để theo dõi các kiểu HFpEF dựa trên dữ liệu nhằm xác định cơ chế nền tảng và cơ sở phân tử của chúng. Tại đây, chúng tôi cung cấp một khuôn khổ để hiểu cách tiếp cận dựa trên kiểu hình với HFpEF thông qua việc xem xét (1) bối cảnh lịch sử của HFpEF; (2) mô hình HFpEF hiện tại về viêm do đồng bệnh và rối loạn chức năng nội mô; (3) các phương pháp khác nhau để phân loại con HFpEF; (4) phân loại dựa trên đồng bệnh và điều trị HFpEF; (5) cách tiếp cận học máy trong phân loại HFpEF; (6) các ví dụ từ các thử nghiệm lâm sàng HFpEF; và (7) tương lai của bản đồ kiểu hình (học máy và các phân tích nâng cao khác) để phân loại HFpEF.

Từ khóa

#suy tim #phân suất tống máu bảo tồn #HFpEF #viêm #rối loạn chức năng nội mô #học máy #phân loại kiểu hình

Tài liệu tham khảo

Borlaug BA (2020) Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol 17(9):559–573

Redfield MM (2016) Heart failure with preserved ejection fraction. N Engl J Med 375(19):1868–1877

Shah SJ et al (2016) Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134(1):73–90

Shah SJ et al (2020) Research priorities for heart failure with preserved ejection fraction: national heart, lung, and blood institute working group summary. Circulation 141(12):1001–1026

Murphy SP, Ibrahim NE, Januzzi JL Jr. (2020) Heart failure with reduced ejection fraction: a review. JAMA 324(5):488–504

Katz DH et al (2017) Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction. J Cardiovasc Transl Res 10(3):275–284

Shah SJ et al (2015) Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131(3):269–279

Shah SJ (2019) 20th annual Feigenbaum lecture: Echocardiography for precision medicine-digital biopsy to deconstruct biology. J Am Soc Echocardiogr 32(11):1379–1395.e2

Sanders-van Wijk S et al (2020) Proteomic evaluation of the comorbidity-inflammation paradigm in heart failure with preserved ejection fraction: results from the PROMIS-HFpEF study. Circulation 142(21):2029–2044

Shah SJ et al (2018) Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J 39(37):3439–3450

Burke MA et al (2014) Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. Circ Heart Fail 7(2):288–299

Harada D et al (2020) Different pathophysiology and outcomes of heart failure with preserved ejection fraction stratified by K‑means clustering. Front Cardiovasc Med 7:607760

Casebeer A et al (2021) Phenotypic clustering of heart failure with preserved ejection fraction reveals different rates of hospitalization. J Cardiovasc Med 22(1):45–52

Schrub F et al (2020) Heart failure with preserved ejection fraction: A clustering approach to a heterogenous syndrome. Arch Cardiovasc Dis 113(6-7):381–390

Segar MW et al (2020) Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur J Heart Fail 22(1):148–158

Kobayashi Y et al (2019) Approaching higher dimension imaging data using cluster-based hierarchical modeling in patients with heart failure preserved ejection fraction. Sci Rep 9(1):10431

Hedman AK et al (2020) Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning. Heart 106(5):342–349

Przewlocka-Kosmala M et al (2019) Contribution of cardiovascular reserve to prognostic categories of heart failure with preserved ejection fraction: a classification based on machine learning. J Am Soc Echocardiogr 32(5):604–615.e6

Sanchez-Martinez S et al (2018) Machine learning analysis of left ventricular function to characterize heart failure with preserved ejection fraction. Circ Cardiovasc Imaging 11(4):e7138

Rajkomar A, Dean J, Kohane I (2019) Machine learning in medicine. N Engl J Med 380(14):1347–1358

Deo RC (2015) Machine learning in medicine. Circulation 132(20):1920–1930

Thrasher C, Patterson JH, Fiuzat M (2021) Universal definition and classification of heart failure: pharmacists’ perspective: optimizing guideline-directed medical therapy and educating stakeholders. J Card Fail 27(12):1310–1312

Paulus WJ (2019) Phenotypic persistence in heart failure with preserved ejection fraction. Circ Heart Fail 12(3):e5956

Lupon J et al (2019) Heart failure with preserved ejection fraction infrequently evolves toward a reduced phenotype in long-term survivors. Circ Heart Fail 12(3):e5652

Dougherty AH et al (1984) Congestive heart failure with normal systolic function. Am J Cardiol 54(7):778–782

Shah SJ et al (2016) How to develop and implement a specialized heart failure with preserved ejection fraction clinical program. Curr Cardiol Rep 18(12):122

Sharma K, Kass DA (2014) Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res 115(1):79–96

Heinzel FR et al (2020) Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther 10(5):1541–1560

Mishra S, Kass DA (2021) Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 18(6):400–423

Pieske B et al (2020) How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 22(3):391–412

Bisping E et al (2014) Targeting cardiac hypertrophy: toward a causal heart failure therapy. J Cardiovasc Pharmacol 64(4):293–305

AbouEzzeddine OF et al (2021) Prevalence of transthyretin amyloid cardiomyopathy in heart failure with preserved ejection fraction. JAMA Cardiol 6(11):1267–1274

McHugh K et al (2019) Heart failure with preserved ejection fraction and diabetes: JACC state-of-the-art review. J Am Coll Cardiol 73(5):602–611

van Heerebeek L et al (2008) Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117(1):43–51

Lejeune S et al (2021) Diabetic phenotype and prognosis of patients with heart failure and preserved ejection fraction in a real life cohort. Cardiovasc Diabetol 20(1):48

Maack C et al (2018) Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 39(48):4243–4254

Unger ED et al (2016) Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 18(1):103–112

Odajima S et al (2022) Efficacy of Renin-angiotensin-aldosterone-system inhibitors for heart failure with preserved ejection fraction and left ventricular hypertrophy -from the KUNIUMI Registry Acute Cohort. J Cardiol 79(6):703–710

Solomon SD et al (2019) Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 382(12):1180–1183

Solomon SD et al (2012) The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 380(9851):1387–1395

Anker SD et al (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385(16):1451–1461

Yusuf S et al (2003) Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-preserved trial. Lancet 362(9386):777–781

Freed BH et al (2016) Prognostic utility and clinical significance of cardiac mechanics in heart failure with preserved ejection fraction: importance of left atrial strain. Circ Cardiovasc Imaging 9(3):e003754. https://doi.org/10.1161/CIRCIMAGING.115.003754

Patel RB et al (2021) Disproportionate left atrial myopathy in heart failure with preserved ejection fraction among participants of the PROMIS-HFpEF study. Sci Rep 11(1):4885. https://doi.org/10.1038/s41598-021-84133-9

Berry N et al (2020) Transcatheter interatrial shunt device for the treatment of heart failure: rationale and design of the pivotal randomized trial to REDUCE elevated left atrial pressure in patients with heart failure II (REDUCE LAP-HF II). Am Heart J 226:222–231

Hanff TC et al (2019) Assessment of predictors of left atrial volume response to a transcatheter interatrial shunt device (from the REDUCE LAP-HF trial). Am J Cardiol 124(12):1912–1917

Feldman T et al (2016) Transcatheter interatrial shunt device for the treatment of heart failure: rationale and design of the randomized trial to REDUCE elevated left atrial pressure in heart failure (REDUCE LAP-HF I). Circ Heart Fail 9(7):e003025. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003025

Wessler J et al (2018) Impact of baseline hemodynamics on the effects of a transcatheter Interatrial shunt device in heart failure with preserved ejection fraction. Circ Heart Fail 11(8):e4540

Feldman T et al (2018) Transcatheter Interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [reduce elevated left atrial pressure in patients with heart failure]): a phase 2, randomized, sham-controlled trial. Circulation 137(4):364–375

Obokata M et al (2019) Effects of interatrial shunt on pulmonary vascular function in heart failure with preserved ejection fraction. J Am Coll Cardiol 74(21):2539–2550

Griffin JM et al (2020) Impact of interatrial shunts on invasive hemodynamics and exercise tolerance in patients with heart failure. J Am Heart Assoc 9(17):e16760

Hasenfuss G et al (2015) Rationale and design of the reduce elevated left atrial pressure in patients with heart failure (reduce LAP-HF) trial. J Card Fail 21(7):594–600

Kaye D et al (2014) Effects of an interatrial shunt on rest and exercise hemodynamics: results of a computer simulation in heart failure. J Card Fail 20(3):212–221

Shah S, Feldman JT, Massaro J (2019) Evaluating treatment effect of transcatheter Interatrial shunt device using heart failure event rates-reply. JAMA Cardiol 4(3):299–300

Shah SJ et al (2018) One-year safety and clinical outcomes of a transcatheter Interatrial shunt device for the treatment of heart failure with preserved ejection fraction in the reduce elevated left atrial pressure in patients with heart failure (REDUCE LAP-HF I) trial: a randomized clinical trial. JAMA Cardiol 3(10):968–977

Solomon SD et al (2016) Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur Heart J 37(5):455–462

Povysil G et al (2020) Assessing the role of rare genetic variation in patients with heart failure. JAMA Cardiol 6(4):379

Kazi DS et al (2020) Cost-effectiveness of tafamidis therapy for transthyretin amyloid cardiomyopathy. Circulation 141(15):1214–1224

Maurer MS et al (2018) Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 379(11):1007–1016

Bond LM et al (2013) Small-molecule inhibitors of myosin proteins. Future Med Chem 5(1):41–52

Kaplinsky E, Mallarkey G (2018) Cardiac myosin activators for heart failure therapy: focus on omecamtiv mecarbil. Drugs Context 7:212518

de Boer RA et al (2018) Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol 3(3):215–224

Vaughan DE et al (2017) Plasminogen activator inhibitor‑1 is a marker and a mediator of senescence. Arterioscler Thromb Vasc Biol 37(8):1446–1452

Sun T et al (2019) PAI‑1 contributes to homocysteine-induced cellular senescence. Cell Signal 64:109394

Khan SS et al (2017) A null mutation in SERPINE1 protects against biological aging in humans. Sci Adv 3(11):eaao1617

Senni M et al (2014) New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. Eur Heart J 35(40):2797–2815

McDonagh TA et al (2022) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 24(1):4–131

Schocken DD et al (2008) Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 117(19):2544–2565

Kawano H et al (2019) Effects of blood pressure lowering in patients with heart failure with preserved ejection fraction: a systematic review and meta-analysis. Hypertens Res 42(4):504–513

Vachiéry J‑L et al (2019) Pulmonary hypertension due to left heart disease. Eur Respir J 53(1):1801897

Ghofrani HA et al (2013) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369(4):330–340

Gheorghiade M et al (2015) Effect of vericiguat, a soluble guanylate cyclase stimulator, on Natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. JAMA 314(21):2251–2262

Armstrong PW et al (2020) Effect of vericiguat vs placebo on quality of life in patients with heart failure and preserved ejection fraction: the VITALITY-HFpEF randomized clinical trial. JAMA 324(15):1512–1521

Pieske B et al (2017) Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J 38(15):1119–1127

Hammer S et al (2008) Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol 52(12):1006–1012

Kitzman DW et al (2016) Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 315(1):36–46

Galli E et al (2021) Phenomapping heart failure with preserved ejection fraction using machine learning cluster analysis: prognostic and therapeutic implications. Heart Fail Clin 17(3):499–518

Jonnalagadda SR et al (2017) Text mining of the electronic health record: an information extraction approach for automated identification and Subphenotyping of HFpEF patients for clinical trials. J Cardiovasc Transl Res 10(3):313–321

Ahsan H et al (2021) A machine learning model of medical claims data for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy. Nat Commun 12(1):2725. https://doi.org/10.1038/s41467-021-22876-9

Goto S et al (2020) Artificial intelligence-enabled, fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms. medRxiv, vol 2020:2020.07.02.20141028

Shah SJ et al (2022) Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II): a randomised, multicentre, blinded, sham-controlled trial. Lancet 399(10330):1130–1140

Shah SJ (2017) Innovative clinical trial designs for precision medicine in heart failure with preserved ejection fraction. J Cardiovasc Transl Res 10(3):322–336

Borlaug BA et al (2022) Latent pulmonary vascular disease may alter the response to therapeutic atrial shunt device in heart failure. Circulation 145(21):1592–1604

Kucukseymen S et al (2021) Noncontrast cardiac magnetic resonance imaging predictors of heart failure hospitalization in heart failure with preserved ejection fraction. J Magn Reson Imaging 55(6):1812–1825

Pandey A et al (2021) Deep-learning models for the echocardiographic assessment of diastolic dysfunction. JACC Cardiovasc Imaging 14(10):1887–1900

Zordoky BN et al (2015) Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS One 10(5):e124844

Bahls M et al (2019) Heterogeneous metabolic response to exercise training in heart failure with preserved ejection fraction. J Clin Med 8(5):591

Forslund SK et al (2021) Combinatorial, additive and dose-dependent drug-microbiome associations. Nature 600(7889):500–505